Α	Portamatrices guiados por columnas
В	Placas y regletas rectificadas
C	Elementos de transporte y sujeción
D	Elementos de guía
E	Elementos de precisión Punzones y casquillos de corte, elementos de corte de cambio rápido, pasadores, expulsores, calibres
F	Muelles/resortes
G	Elastómeros
Н	Productos químicos FIBRO
J	Periféricos
K	Carros para troqueles
L	Elementos normalizados para la construcción de moldes

Elementos de precisión rectificados

Elementos de precisión

Un amplio surtido de medidas y materiales permite en nuestro programa »Piezas de Precisión« practicamente cualquier elección. Por favor preste atención a nuestras posibilidades de suministro.

Nuestras existencias de piezas de precisión standard en los almacenes nacionales y en el extranjero alcanzan cifras de siete dígitos; seguro que se encuentra entre las mismas la que usted precisa. Faltas momentáneas de stock se reponen rápidamente.

Producción en serie, sin embargo, no significa solamente disponibilidad de suministro, sino también el control de una calidad constante, de acuerdo con el nivel tecnológico en cada momento.

Desde la recepción de las primeras materias hasta el suministro del producto acabado, cada fase de producción es objeto de un riguroso control intermedio, que abarca los análisis y la verificación de los materiales, los tratamientos térmicos, así como el control de medidas y de la calidad de las superficies.

Una comprobación final garantiza que salgan de nuestras fábricas todas las piezas de acuerdo con nuestro elevado standard de calidad (comprobación pieza por pieza).

Nos reservamos el derecho a modificar nuestros productos, consecuencia de la evolución tecnológica de nuevas aplicaciones. La acertada relación entre el material de la chapa y el material de la herramienta empleada es decisiva para la duración de los elementos de corte activos (punzones, placas de corte), y finalmente para el coste de las herramientas y la calidad de las piezas fabricadas.

Llamamos la atención sobre el hecho de que la inversión realizada en las técnicas constructivas y de producción solamente surten efecto si se mantiene la posición – placa portapunzones / placa matriz – mediante guías apropiadas.

La amplia gama de materiales para nuestros elementos de corte que indicamos debe ser para usted una ayuda orientativa.

Igualmente le facilitarán la elección los diagramas de las relaciones de dureza, resistencias a la flexión y a la rotura así como la dureza de los principales materiales empleados en la fabricación de nuestras herramientas.

Podrá obtener especificaciones adicionales, consultando nuestro Departamento Técnico.

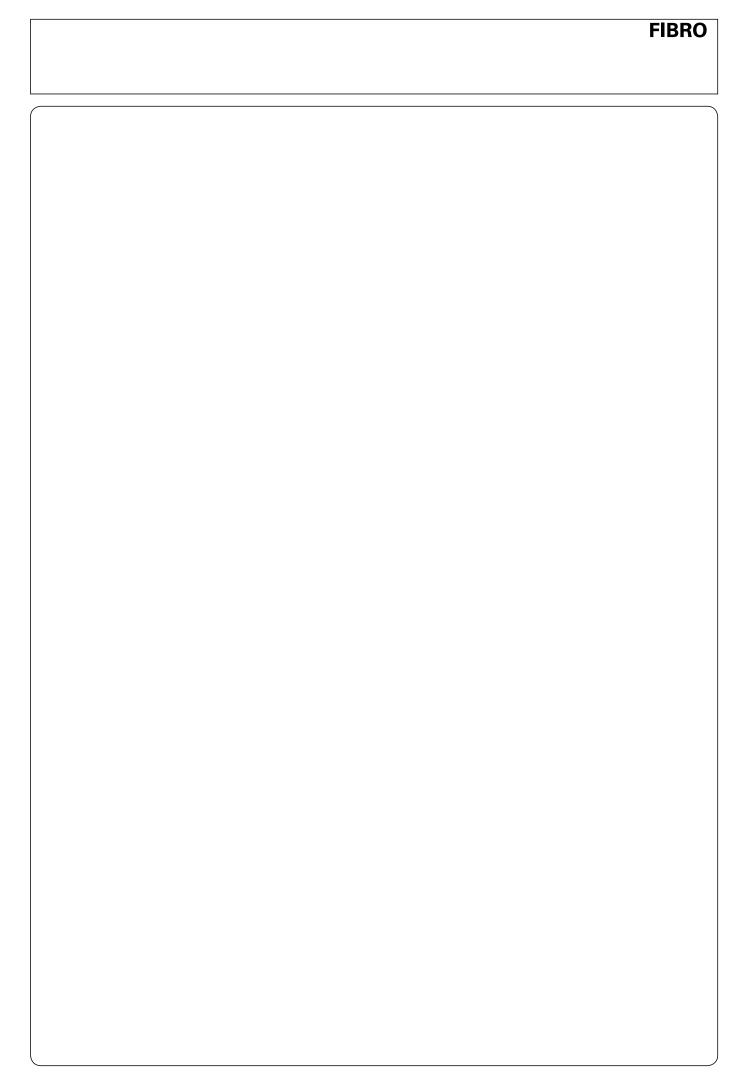
Indice

		Página				Página
222.	Características de los materiales Instrucciones de montaje Punzones de corte de precisión	E10-E11, E26 E20 E12		220.	Punzones de corte de precisión DIN 9844 Forma A	E21
	DIN 9861, Shape DA Punzones de corte de precisión	E13		221.	Punzones de corte de precisión DIN 9844 Forma B	E21
	DIN 9861 Shape D/ISO 6752			266.	Punzones de corte de precisión similares a VDI 3374	E23
224. 225.	Punzones de corte de precisión DIN 9861, Shape CA+C	E14		267	Punzones de corte de precisión	E24
274. 275.	Punzones de corte de precisión especiales similares a DIN 9861, formas CA+C	E15	er = == Comminum		con expulsor	
232.	Punzones de corte de precisión VDI 3374	E16		268.	Punzones de corte de precisión con expulsor de mecha corta	E25
233.	Casquillos con pasador de	E16	Complement of the second	269.	Punzones de corte de precisión con expulsor de mecha larga	E25
	presión VDI 3374			270.	Punzones de corte de metal duro similares a DIN 9844 + DIN 9861 Forma A	E27
234.	Casquillos con pasador de presión VDI 3374	E16		271.	Punzones de corte de metal duro similares a DIN 9844 +	E27
2281.	Punzones de corte de precisión con 30°-Cabeza, Forma D	E17		272	DIN 9861 Forma B	F27
2291.	Punzones de corte de precisión con 30°-Cabeza, Forma C	D17		212.	Punzones de corte de metal duro similares a DIN 9844 + DIN 9861 Forma D	E27
2284.3.	Punzónes de corte con cabeza	E18-		273.	Punzones de corte de metal duro similares a DIN 9844 + DIN 9861 Forma C	E27
2284.00.	en forma de trombón, Forma D Fresas para asientos de punzones con cabeza en forma de trombón	E19				

Indice

			Página				Página
	2202.	Punzones de corte de cambio rápido para trabajos ligeros en bruto	E32- E33	Communication of the Communica	2703.	Punzones de corte de cambio rápido, en bruto, con expulsor, para trabajos duros	E44- E45
	2212. 2222. 2232. 2242. 2252.	Punzones de corte de cambio rápido para trabajos ligeros con mecha			2713. 2723. 2733. 2743. 2753.	Punzones de corte de cambio rápido con mecha, con expulsor para trabajos duros	
- Community of the Control of the Co	2702.	Punzones de corte de cambio rápido,en bruto, con expulsor, para trabajos ligeros	E34- E35		2215.	Punzones de corte de cambio rápido con el diámetro de corte mayor que la caña, para trabajos duros	E46- E47
	2712. 2722. 2732. 2742.	Punzones de corte de cambio rápido, con mecha, con expulsor, para trabajos ligeros			2245. 2255.		
	2752.			- standarding	2705. 2715. 2725.	Punzones de corte de cambio rápido con el diámetro de corte mayor que la caña, con expulsor, para trabajos duros	E48- E49
	2214. 2224. 2234.	Punzones de corte de cambio rápido con el diámetro de corte mayor que la caña, para trabajos ligeros	E36- E37		2735. 2745. 2755.	expaiso, para dabajos daros	
	2244. 2254.				2263.	Perno de posicionado de cambio rápido, con punta cónica, para trabajos duros	E50
	2714.	Punzones de corte de cambio rápido con el diámetro de corte mayor que la caña, con	E38- E39	A			
	2734. 2744. 2754.	expulsor, para trabajos ligeros			2273.	Perno de posicionado de cambio rápido, con punta parabólica, para trabajos duros	E51
	2262.	Perno de posicionado de cambio rápido, con punta cónica, para trabajos ligeros	E40		2201.	Punzones de corte de precisión ISO 8020	E56- E57
					2211. 2221. 2231.	Punzones de corte de precisión con mecha ISO 8020	
	2272.	Perno de posicionado de cambio rápido, con punta parabólica, para trabajos ligeros	E41		2241. 2251. 2251.		
	2203.	Punzones de corte de cambio rápido, en bruto, para trabajos duros	E42- E43				
	2213. 2223. 2233. 2243. 2253.						

E5

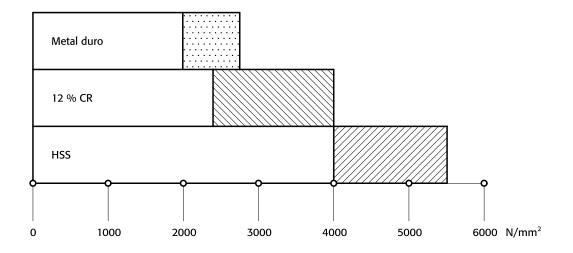

Indice

			Página				Página
E management of the state of th	2701.	Punzones de cortede precisión con expulsor, ISO 8020	E58- E59		261.	Casquillos de corte de precisión con valona, DIN 9845, Forma B	E77
S mamman (S	2711. 2721. 2731. 2741. 2751.	Punzones de corte de precisión con mecha de forma con expulsor, ISO 8020			2602.	Casquillos de corte de precisión sin valona, cilíndricos	E78
	2261.	Perno de posicionado con punta cónica, ISO 8020	E60		2612.	Casquillos de corte de precisión con valona, cilíndricos	E78
	2271.	Perno de posicionado con punta parabólica, ISO 8020	E61		2601.	Casquillos de corte de precisión sin valona, cónicos	E79
	2276.	Unidades de posicionado según Norma Daimler	E62		2611.	Casquillos de corte de precisión con valona, cónicos	E79
		Casquillos de corte de precisión sin valona, cilíndricos, ISO 8977	E67-			Formas especiales de punzones y casquillos de corte (estandardizadas)	E83- E85
	2616. 2626. 2636. 2646. 2656.		E69		2618.	Elementos rascador dinámico	E88
	2607. 2617. 2627. 2637.	Casquillos de corte de precisión con valona, cilíndricos, ISO 8977	E71- E73		2618.06. 2618.16. 2618.07. 2618.17.	Casquillos de corte sin y con valona para elementos rascador dinámico	E89- E90
	2647. 2657.				2664.05 2664.06. 2664.07.	Placas porta-punzones de precisión triangulares para punzones de corte de cambio rápido, ejecución ligera/	E92- E94
2	2615. 2625. 2635.	Casquillos de corte sin valona, Norma Automoción	E74- E75	•	2664.10. 2664.08. 2664.09.		
	2645. 2655.		53 6			Accesorios para placas porta- punzones de precisión triangulares, para punzones de corte de cambio rápido	E95
		Casquillos guía-punzones de precisión, DIN 9845, Forma C Casquillos guía-punzones de	E76 E76		2661.07. 2661.08.	Placas porta-punzones de precisión cuadradas, para	E96
		precisión, ISO 8978 Casquillos de corte de precisión sin valona, DIN 9845 Forma A	E77		2002.00.	punzones de cambio rápido, ejecución ligera	

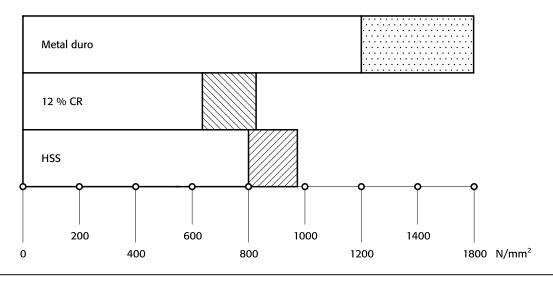
Indice

		Página				Página
2662.05.	Placas porta-punzones de precisión rectangulares, para punzones de cambio rápido,	E97			Piezas de precisión especiales	E112- E113
2668.2.	ejecución ligera ACCU-LOCK Inserto de sujeción	E98		230.	Punzones de corte de precisión quadrados y rectangulares, sin cabeza	E114
2668.3.	para punzones de corte de cambio rápido, ejecución ligera y ejecución reforzada			231.	Punzones de corte de precisión quadrados y rectangulares, con	E114
2664.02.	precisión triangulares, para punzones de corte redondos ISO	E100		2264	cabeza recalcada	
2664.04.	8020/para punzones de corte de forma ISO 8020 Accesorios para porta-punzones	E101		236.1. 2361.1.	Pasadores de precisióncon rosca interior similares a DIN EN ISO 8735/ISO 8735	E115- E116
	de precisión triangulares para punzones de corte ISO 8020			236.001.	Accesorios: FIBROZIPP	
2661.01. 2661.02.	Placas porta-punzones de precisión cuadradas, para punzones ISO 8020	E102	99	265.1.	Casquillos de precisión para	E117
	pa			2650.1.	guía-pasadores para colar con resina epoxi/para fijar por pegamento	
2662.01. 2662.02.	Placas porta-punzones de precisión rectangulares, para punzones de corte ISO 8020	E103		235.1. 2351.1.	Pasadores cilíndricos de precisión símil a DIN EN ISO 8734/ISO 8734	E118- E119
			Ų			
2661.03. 2661.04.	Placas porta-punzones de precisión cuadradas, para punzones redondos VDI 3374	E106		276.	Casquillos guía-brocas con valona, DIN 172 ejecución A	E121
	Placas porta-punzones de	E107		277.	Casquillos guía-brocas sin valona, DIN 179 ejecución A	E121
2661.06.	precisión cuadradas, para punzones de perfil VDI 3374					
2662.03. 2662.04.	Placas porta-punzones de precisión rectangulares, para	E108		240.	Calibres de precisión cilindricos DIN 2269 Accesorios:	E122- E123
2002.04.	punzones VDI 3374		U		Estuches con alojamientos Porta-calibres	
2431.7.	Parcadoros	E110		240.22.	Calibres cilíndricos con mango	E124
27J1.1.	RUJCAUUICS			240.31. 240.32.	Calibres cilíndricos con estuches con alojamientos	E124
2667.	Conjuntos de sujeción para rascadores	E111		2282.01.	Unidades de punzonar y embutir, con matriz, agujeros para tornillos de chapa	E125
						J

Nos reservamos el derecho de hacer modificaciones



Gráficos


Resistencia a la presión (0,2 límite de deformación)

Resistencia a la rotura por flexión

Dureza HV 30

Características de los materiales

WS

acero aleado para herramientas

material núm. 1.2210, 1.2516, 1.2842 ó similar.

Características del material:

Acero tenaz y flexible, con mediana resistencia al desgaste.

Aplicaciones:

Útiles de corte y punzonado, para aceros de construcción, metales no-férreos, plásticos, papel.

WS = código del material = «1»

p.e. Código = 239.**1**...

HWS

= acero de herramientas de alto rendimiento con el 12 % de Cr

material núm. 1.2436, 1.2379 ó similar.

Características del material:

Alta resistencia al desgaste.

Aplicaciones:

Cuchillas de corte y herramientas de corte de precisión, matrices de rebarbar, para toda clase de aceros de construcción y de baja aleación, metales no-férreos, plásticos, papel.

HWS = código del material = «2»

p.e. Código = 260.**2**. ...

HSS

acero rápido de alto tendimiento

material núm. 1.3343 ó similar.

Características del material:

Alta resistencia al desgaste.

Aplicaciones:

Cuchillas de corte y herramientas de corte de precisión para materiales de alta resistencia como flejes de acero, chapa magnética así como papel y plásticos.

HSS = código del material = «3»

p.e. Código = $220.\overline{3}$

ASP 23 ASP 2023

Aplicaciones:

= acero rápido pulvimetalúrgico de alto rendimiento

Características del material:

Alta resistencia al desgaste. Gracias a su perfecta homogeneidad, mayor tenacidad que HSS.

Como HSS.

ASP 23

ASP 2023 = código del material = «6»

p.e. Código = 223.**6**. ...

HST

acero rápido de altas prestaciones, nitrurado en baño (Tenifer)

Características del material:

Alta resistencia al desgaste, gran disminución de la tendencia a la adhesión de los metales cortados. Los nitritos de nitrógeno difundidos en el proceso Tenifer proporcionan una resistencia al desgaste a un más alta y consecuentemente una protección contra la adherencia del metal cortado.

Aplicaciones:

Cuchillas de corte y herramientas de corte de precisión para materiales de alta resistencia y abrasivos, así como papel endurecido y mica.

HST = código del material = «4»

p.e. Código = 223.**4**. ...

FT

= aleación dura Ferro-Titanit o Ferro-Tic

Características del material:

Aleación mecanizable por arranque de viruta, con cualidades entre acero rápido y metal duro pulvimetalúrgico.

Aplicaciones:

Cortes de alta precisión, matrices múltiples y cortes de desbarbado en grandes series, para materiales abrasivos y de alta resistencia así como chapas magnéticas con contenido de silicio, flejes de acero y aceros inoxidables.

FT ejecución especial
– sobre demanda –

Características de los materiales

HZ = piezas de útiles de alto rendimiento con recubrimientos

HZC CVD-multicapa TIC-TIN

Materiales a recubrir: Aceros rápidos mat. núm. 1.3207, 1.3343 y similares

Aceros para trabajos en frío 1.2379, 1.2436 y similares.

Debido al riesgo de deformación de herramientas delgadas por debajo de I/d = 20 : 1, debe

desaconsejarse un recubrimiento.

Características: El recubrimiento base de carburo de titanio proporciona una unión con el material de la pieza,

resistente a las presiones, mientras que la capa superior de nitrito de titanio ofrece las bien conocidas ventajas como componente tribológicamente óptimo de contacto entre el material a

mecanizar y la herramienta.

Alta resistencia al desgaste, evita de gran manera la adherencia del metal cortado.

Dureza de la superficie: aprox. 3500 HV 0,05 Espesor del recubrimiento: aprox. 5 a 8 μ m.

Aplicaciones: Todas las herramientas a las que se requiere un alto rendimiento, preferentemente matrices

múltiples, punzones de embutición y similares.

TIC-TIN = código del material = «5» Código = 223.5. ...

p.e. Código = 223.5.... HZN PVD nitrito de titanio TIN

Materiales a recubrir: Aceros rápidos mat. núm. 1.3207, 1.3343 y similares.

Aplicación restringida en aceros para trabajos en frío.

Características: La capa de TIN es igualmente un componente tribológicamente excelente para fricciones, pero con

menor resistencia a la presión que TIĊ-TIN. Posibilidad de recubrimientos parciales. Dureza de la superficie: aprox. 2300 HV 0,05 Espesor del recubrimiento: 3 a 5 μm.

Aplicaciones: Chapas delgadas como p. e. fleje de acero, hierro magnético blando, chapa galvanizada, alpaca,

bronce CU-Be.

La relación grosor de la chapa: diámetro a cortar no debería sobrepasar 1:3.

TIN = código del material = «0»

p.e. Código = 223.**0**. ...

HM = metal duro

Características del material: Metal duro elaborado pulvimetalúrgicamente a base de WC con las características conocidas; por

nuestra parte hacemos servir exclusivamente material compactado por el sistema HIP, con mayor

resistencia a la flexión y menor porosidad.

Aplicaciones: Herramientas de alto rendimiento para series grandes y muy grandes, con la exigencia de larga duración

auracion.

HM = código del material = «9»

p.e. Código = 270.**9**. ...

NWA = acero nitrurado para trabajos en caliente

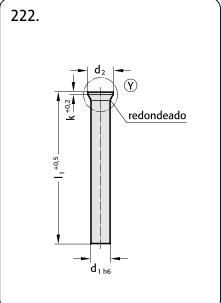
material núm. 1.2344 ó similar.

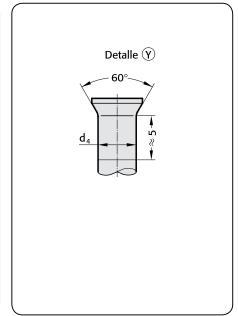
Características del material: Acero aleado Cr-Mo-V para trabajos en caliente, con una resistencia a la tracción del núcleo de

1300–1500 N/mm² y una temperadura de revenido de hasta 650 °C, dureza de la superficie

 \geq 950 HV 0,3.

Aplicaciones: Expulsores para útiles de fundición a presión y por inyección.


NWA = código del material = «8»


p.e. Código = 237.**8**. ...

Punzones de corte de precisión DIN 9861 forma DA

222.

Ejecución:

Forma DA

Caña en rectificado fino. Cabeza recalcada en caliente y revenida. El reborde d $_{\rm 4}$ debajo de la cabeza, debido al recalcado, es generalmente muy inferior al admitido en la norma DIN 9861.

Nota:

Los punzones de corte pueden suministrarse igualmente sin recalcar la cabeza.

Ejemplo de pedido:

= 222.
= 3.
= 0630.
= 071
= 222.3.0630.071

Material:

HZ – TIN (HSS)

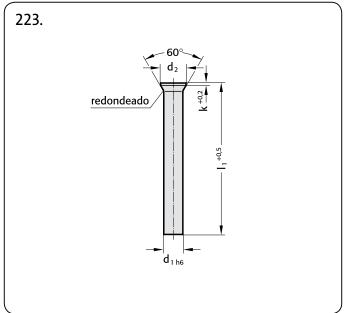
Código: 222.0.

Dureza: Superficie 2300 HV 0,05
Cabeza 52±3 HRC

HSS
Código: 222.3.
Dureza: Caña 64±2 HRC
Cabeza 52±3 HRC

HST Código: 222.4

Dureza: Superficie ≧950 HV 0,3 Cabeza 52±3 HRC


Para otros materiales y descripciones, véanse páginas € 10−€ 11.

222. Escalonamiento $\frac{d_4}{d_1^{+0,02}}$ d₁ 0,50 0,9 0,2 0,55 1,0 Longitudes disponibles: 71, 80 y 100 mm. Otras longitudes y diámetros sobre demande. 0,60 1,1 0,65 0,70 + 0,751,3 0,4 0,80 + 0,850,90 + 0,951,6 d₁+0,03 0,1 1,8 0,5 1,0 + 1,1 1,2 + 1,3 2,0 1,4 + 1,5 2,5 2,8 1,6 + 1,71,8 + 1,9 3,0 2,0 2,1 + 2,22,3 - 2,5 3,5 2,6 – 2,9 4,0 5,0

222.					
Es	calonamien	ito			
d ₁	d_1	d_2	d_4	k	I_1
d ₁ 4,5 - 4,9	0,1	6,0	d ₁ +0,03	0,5	
5,0 - 5,4		6,5			
5,5 - 5,9		7,0			_ E
6,0 - 6,4		8,0			0
6,5 + 7,0	0,5	9,0		1,0	udes disponibles: 71, 80 y 100 Otras longitudes y diámetros sobre demande.
7.5 + 8.0		10,0			et.
8,5 + 9,0		11,0			 am e.
9,5 + 10,0		12,0			_ <u>f, e</u> 5
10,5 + 11,0		13,0			ss: ,
11,5 + 12,0		14,0			_ ple
12,5 + 13,0		15,0			ngitus re (gitus
13,5 + 14,0		16,0		1,5	_ sp.g.d
14,5 + 15,0		17,0			- ibis
15,5 + 16,0		18,0			_ des
					_ 3Ĕ
					Longitudes disponibles: 71, 80 y 100 Otras longitudes y diámetros sobre demande.
					_ 5
					_

223.

Punzones de corte de precisión DIN 9861 forma D/ISO 6752

Material:

HSS Código: 223.3. 64±2 HRC Caña Dureza: Cabeza 52±3 HRC

HST

Código: 223.4.

Superficie ≥950 HV 0,3 Dureza: 52±3 HRC Cabeza

HZ-TIN (HSS)

Código:

Dureza: Superficie 2300 HV 0,05 Cabeza 52±3 HRC

ASP 23-ASP 2023

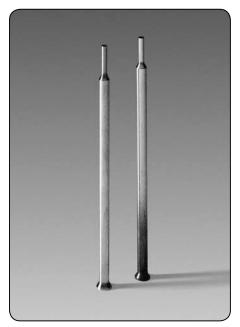
223.6. Código: 64±2 HRC Dureza: Caña Cabeza 52±3 HRC

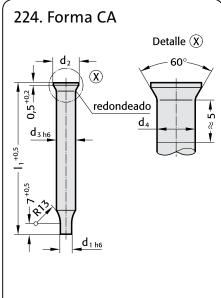
Para otros materiales y descripciones, véanse páginas E 10-E 11.

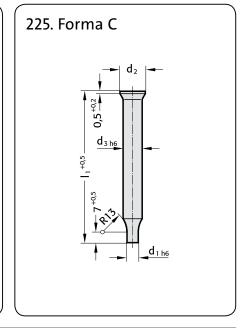
Ejecución:

La caña, después de haber recalcado en caliente y revenido la cabeza, es rectificada en «plongée» de acabado fino. Así se eliminan los rebordes del recalcado debajo de la cabeza y se consigue una exacta concentricidad entre caña y cabeza.

De esta forma, se hace perfectamente posible un intercambio entre sí de diferentes punzones.


Ejemplo de pedido:


Punzón de corte = 223. Material HSS $d_1 = \emptyset$ 16,5 mm l₁ = 80 mm 080 Código = 223.3.1650.080


223.				
	Escalonamientos			
d ₁	d_1	d_2	k	l ₁
0,50	0,05	0,9	0,2	
0,55		1,0		
0,60		1,1 1,2 1,3 1,4		
0,65		1,2		_
0,70 +0,75		1,3		
0,80 +0,85		1,4	0,4	udes disponibles: 71, 80 y 100 Otras longitudes y diámetros sobre demande.
0,90 +0,95 1,0 +1,1		1.6		etr
1,0 +1,1	0,1	1,8	0,5	_ 80 Km =:
1,2 +1,3 1,4 +1,5		2,0		. 년향호
1,4 +1,5		2,2		s y
1,6 +1,7		2,5		ble dei
1,8 +1,9		2,8		e it u
2,0		3,0		og grad
2,1 +2,2		3,2		i i i i i i i i i i i i i i i i i i i
2,3 -2,5		3,0 3,2 3,5 4,0 4,5		es
2,6 -2,9		4,0		_ BR
3,0 -3,4		4,5		gi.
1,2 +1,3 1,4 +1,5 1,6 +1,7 1,8 +1,9 2,0 2,1 +2,2 2,3 -2,5 2,6 -2,9 3,0 -3,4 3,5 -3,9 4,0 -4,4 4,5 -4,9 5,0 -5,4		5,0 5,5		Longitudes disponibles: 71, 80 y 100 mm. Otras longitudes y diámetros sobre demande.
4,0 -4,4		5,5		_
4,5 -4,9		6.0		
4,0 -4,4 4,5 -4,9 5,0 -5,4		6,5		<u> </u>

223.				
	Escalonamientos			
d ₁ h6	d_1	d_2	k	l ₁
5,5 -5,9	0,1	7,0	0,5	
6,0 - 6,4		8,0		
6,5 + 7,0	0,5	9,0	1,0	
7,5 + 8,0		10,0		띹
8,5 + 9,0		11,0		
9,5 +10,0		12,0		udes disponibles: 71, 80 y 100 Otras longitudes y diámetros sobre demande.
10,5 +11,0		13,0		etr
11,5 +12,0		14,0		_ 80 ,
12,5 +13,0		15,0		7, <u>ig</u> 5
13,5 +14,0		16,0	1,5	s: 7 s y nai
14,5 +15,0		17,0		- se dei dei
15,5 +16,0		18,0		itu ni
16,5 +17,0		19,0		od grade
17,5 +18,0		20,0		_ 흥흥 은 જ
18,5 +19,0		21,0		es ras
19,5 +20,0		22,0		_ g t
				Longitudes disponibles: 71, 80 y 100 mm. Otras longitudes y diámetros sobre demande.
				_ no-

225.

Ejecución:

Caña en rectificado fino. Cabeza recalcada en caliente y revenida. El reborde d₄ debajo de la cabeza, debido al recalcado, es generalmente muy inferior al admitido por DIN 9861.

La caña, después de haber recalcado en caliente y revenido la cabeza, es rectificada fina en «plongée». Así se eliminan rebordes debajo de la cabeza y se consigue una exacta concentricidad entre caña y cabeza. De esta forma, un intercambio de los punzones entre si es perfectamente posible.

Ejemplo de pedido:

= 225.
= 3.
= 0230.
= 071
= 225.3.0230.071

Material:

HZ – TIN (HSS) N° de pedido: Forma CA = 224.0., Forma C = 225.0.

Superficie 2300 HV 0,05 Dureza:

Cabeza 52±3 HRC

HSS Código:

Forma CA = 224.3., Forma C = 225.3. Dureza: 64±2 HRC Caña

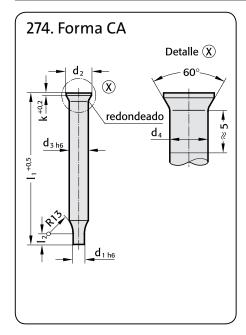
52±3 HRC Caheza

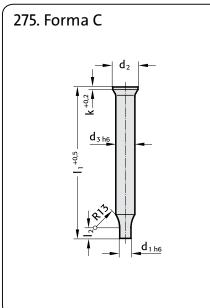
Código: Forma C = 225.4.

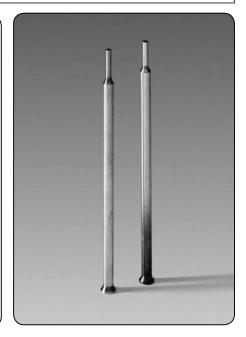
Dureza: Superficie ≥950 HV 0,3 52±3 HRC

ASP 23-ASP 2023

Forma C = 225.6. N° de pedido: Dureza: Caña 64±2 HRC 52±3 HRC Cabeza


Para otros materiales y descripciones, véanse páginas € 10 – € 11.


224.					
E:	scalonamien	tos			
_ d ₁	d_1	d_2	d₃	d_4	l ₁
0,1-0,45	0,05	3	2	d ₃ +0,03	_
0,50					_
0,55					=
0,60					_
0,65					= .
0,70 + 0,75					Longitud disponibles: 71 mm. Otras longitudes y diámetros sobre demanda.
0,80 + 0,85					Etr '
0,90 + 0,95					a. a.
1,00 - 1,10					nd di es
1,15 – 1,30					ibl s y na
1,35 – 1,50					- ger der
1,55 – 1,70		4,5	3		isp re.git.
1,75 – 1,90					b b gu qo
1,95 – 2,00					. ages
2,05 – 2,20					n g
2,25 – 2,50					_ 95
2,55 – 2,95					-
					=
					_
					-


225.				
	Escalonamiento	s		
d_1	d_1	d_2	d₃	I_1
0,1-0,45	0,05	3	2	
0,50				
0,55				
0,60				
0,65				
0,70 + 0,75				Longitud disponible: 71 mm. Otras longitudes y diámetros sobre demanda.
0,80 + 0,85				net
0,90 + 0,95				 71 ár a.
1,00 - 1,10				je: di
1,15 – 1,30				mib ma
1,35 – 1,50		4.5		— 6 pg — d
1,55 – 1,70		4,5	3	dis gitu
1,75 – 1,90 1,95 – 2,00				— pa
$\frac{1,95-2,00}{2,05-2,20}$				— gitti
$\frac{2,03-2,20}{2,25-2,50}$				on on trial
$\frac{2,25-2,30}{2,55-2,95}$				
2,33 2,33				_
				—
				—

274.275.

Punzones de corte de precisión especiales similares a DIN 9861, formas CA+C

Material:

HZ-TIN (HSS)

Código: Forma CA = 274.0., Forma C = 275.0.

Dureza: Superficie 2300 HV 0,05

Cabeza 52±3 HRc

HSS

Código: Forma CA = 274.3., Forma C = 275.3.

Dureza: Caña 64±2 HRc

HST

Código: Forma CA = 274.4., Forma C = 275.4.

Dureza: Superficie ≧950 HV 0,3

Cabeza 52±3 HRc

ASP 23-ASP 2023

Código: Forma C = 275.6.

Dureza: Caña 64±2 HRC

Cana 64±2 HKC Cabeza 52±3 HRC

Para otros materiales y descripciones, véanse páginas E 10-E 11.

Ejecución:

Forma CA

Caña en rectificado fino, cabeza recalcada en caliente y revenida. El reborde d₄ debajo de la cabeza, debido al recalcado, es generalmente muy inferior al admitido por DIN 9861.

Forma (

La caña, después de haber recalcado en caliente y revenido la cabeza, es rectificada en »plongée». Así se eliminan rebordes debajo de la cabeza y se consigue una exacta concentricidad entre caña y cabeza

De esta forma, un intercambio de los punzones entre si es perfectamente posible.

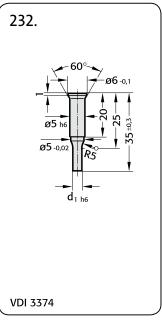
Descripciones:

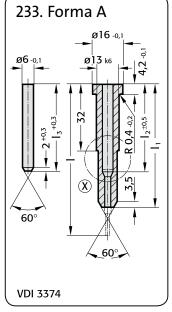
DIN 9861 limita punzones de corte rebajados a diámetros de corte pequeños hasta d_1 = 2,95 mm y a diámetros de caña a d_3 = 3,00 mm.

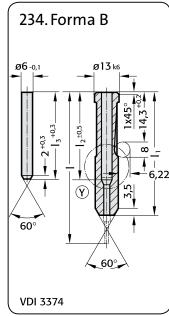
Ahora bien, para admitir mayores fuerzas de corte y de retroceso, así como para conseguir una duración más larga gracias a la mayor rigidez de los punzones de corte, en la práctica se da frecuentemente preferencia a punzones de corte especiales, similares a las formas CA y C, DIN 9861, que confeccionamos por transformación de los punzones, que tenemos en existencia, forma DA y D, DIN 9861, códigos de pedido 222–223.

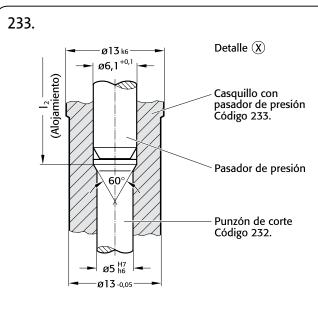
Sírvanse elegir los punzones-base de acuerdo con lo expuesto y según el ejemplo de código de pedido.

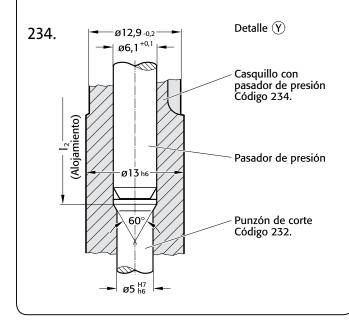
Ejemplo de pedido:


Punzón de corte CA	= 27	' 4.			
Material HSS	=	3.			
$d_3 = \emptyset$ 8,0 mm	=	0800			
$\bar{l}_1 = 71 \text{ mm}$	=		071.		
$d_1 = \emptyset$ 6,4 mm	=		0640.		
l ₂ = 10 mm	=		01	.0	
Código	= 274.3.0800.071.0640.010				


E15


232. 233.


234.



Ejecución:

Punzón de corte VDI 3374. Cabeza recalcada en caliente. Superficie de contacto y caña, en rectificado «plongée» de acabado

Casquillo VDI 3374. Caña en rectificado fino. Pasador de presión: templado y rectificado.

Material:

Punzón de corte VDI 3374

HSS

Código: 232.3. Dureza: Caña 62±2 HRc

Cabeza 45±5 HRc

Casquillo VDI 3374

C 45 bonificado a 800 N/mm² Código: Forma A = 233.7., Forma B = 234.7.

Pasador de presión:

HWS

Dureza: 62±2 HRc

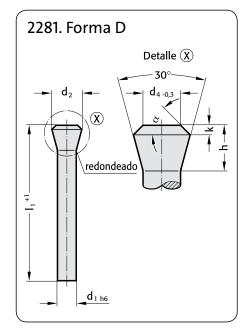
Para descripciones y otros materiales, véanse páginas ${\tt E}$ 10 $-{\tt E}$ 11.

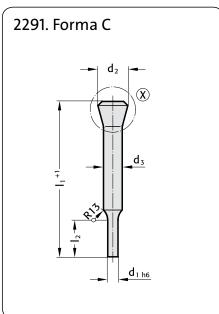
232./233./234.

Esc	alonamien	tos			
$d_\mathtt{1}$	d_1	I	I_1	I_2	I_3
de 2,0 a 5,0	0,1	63	48	29	29
		71	57	37	37
		80	65	46	46

Ejemplo de pedido:

Punzón de corte	= 23	32.	
Material HSS	=	3.	
$d_1 = \emptyset$ 2,2 mm	=	0220	
Código	= 23	32.3.0220	


Ejemplo de pedido:


1	
Casquillo con pasador de presión VDI 3374	= 233.
Material C 45	= 7.
$I_1 = 48 \text{ mm}$	= 048
Código	= 233.7.048

2281.

2291.

Punzones de corte de precisión con 30°-Cabeza, Forma C + D

Material:

HSS

Código: Forma D = 2281.3. Forma C = 2291.3. Dureza: Caña 58 + 2 HRC

Cabeza ≤ 50 HRC

Ejecución:

Formas D y G:

La caña, después de haber sido recalcada en caliente y revenida la cabeza, es rectificada en «plongée». Así se eliminan rebordes debajo de la cabeza y se consigue una exacta concentricidad entre caña y cabeza.

De esta forma, un intercambio de los punzones entre si es perfectamente posible.

Para otros materiales y descriptiones, véanse páginas ϵ 10 $-\epsilon$ 11.

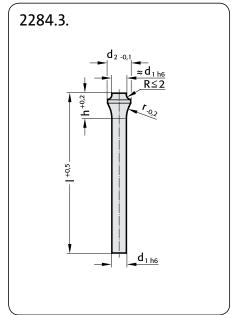
2281. Forma D

							1	
d_1	d_2	d₄	h	k	$\alpha \pm 1^{\circ}$	100	120	
5,5	8,98	5,5	7,5	1	30	•	•	
6	9,75	6	8		28	•	•	
8	12,8	8	10		22,5	•	•	
9	14,4	9	11		20	•	•	
10	15,9	10	12		19	•	•	
12	18,7	12	14	1,5	24		•	
14	21,8	14	16		21		•	
16	24.6	16	18	2	25		•	

Ejemplo de pedido:

•
= 2281.
= 3.
= 0600.
= 100
= 2281.3.0600.100

2291. Forma C

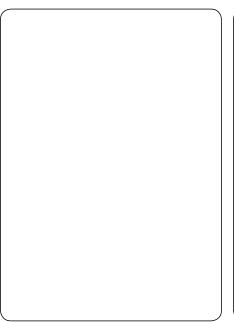

						I ₁	
d₃	d_2	d₄	h	k	$\alpha \pm 1^{\circ}$	100	120
5,5	8,98	5,5	7,5	1	30	•	•
6	9,75	6	8		28	•	•
8	12,8	8	10		22,5		•
9	14,4	9	11		20	•	•
10	15,9	10	12		19	•	•
12	18,7	12	14	1,5	24		•
14	21,8	14	16		21		•
16	24,6	16	18	2	25		•

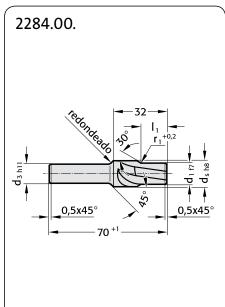
d₁ y l₂ según indicatión del cliente!

Ejemplo de pedido:

Punzónes de corte con cabeza en forma de trombón, Forma D Fresas para asientos de punzones con cabeza de trombón 2284.3. 2284.00.

Material: HSS Código de pedido Dureza: Caña 62 - 66 HRC Cabeza 45 - 55 HRC


Ejecución:


Caña en rectificado fino. Cabeza recalcada en caliente y revenida.

Ejemplo de pedido:

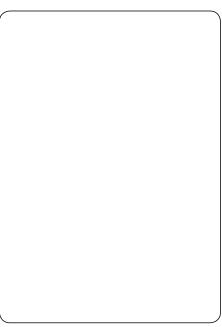
Punzón de corte con cabeza en forma de trombón = 2284.

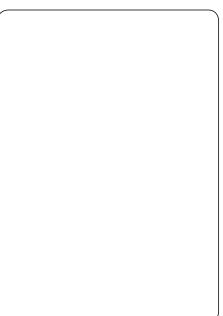
Material HSS	=	3.
d ₁ = 20 mm	=	2000.
l = 100 mm	=	100
Código de pedido	= 22	284.3.2000.100

2284.00.

Material: HSS Dureza: 62 - 66 HRC

Ejecución:


Templado, revenido y rectificado


Para descripción del material y otros materiales, ver páginas E10 - E11.

Ejemplo de pedido:

Fresa para asientos de punzones

con cabeza de trombón	= 2284.00	
$d_1 = 12.5 \text{ mm}$	=	1250
Código de pedido	= 2284.00	.1250

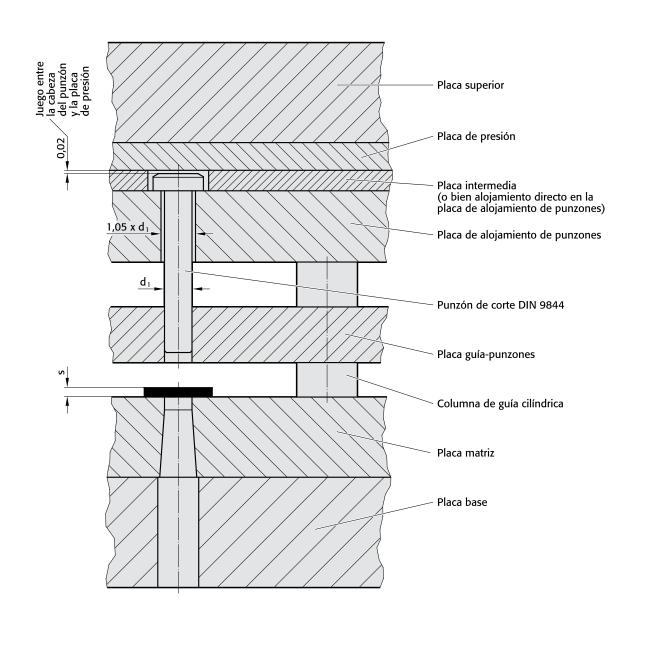
Punzónes de corte con cabeza en forma de trombón, Forma D
 Fresas para asientos de punzones con cabeza de trombón

71	2284.3. 2284.00.									4.00.		
1	d_1	d_2	h	r	71			110	d_S	d_3	r_1	I_1
13 32 528 5	2.0	3	4.80	3.5				110	3.3	3.3	3.5	5.0
3 3.5 5.37 5	.1	3.2	5.28	5	•	•	•		3.5	3.5	5.0	5.0
4 3.5 5.28 5	.2						•					
5 3.5 5.18 5	.3						•					
.6 4 599 6.5												
7	.6					-	.					
3	7				•	•	•					
0.0	.8				•	•	•					
1	9				•	•	•					
45 588 6.5	1.0											
3												
4.5 5.62 6.5	3.3					-						
5 6.27 8	.4		5.62		•	•	•					
7	.5				•	•	•					
S	.6				•	•	•					
1												
1	.0		7.38		•	•	•		5.9			
2	.1	5.5	7.27			•	•		5.9	5.9	8.0	
4 5.5 6.92 8	.2	5.5	7.16	8			•		5.9	5.9	8.0	8.0
S	.3						•					
6	.4				•	•	•					
7.7 6	ر. 6.											
S	.7				•	•	•					
0.0 7	.8	6	7.04	8	•	•	•		6.4	6.4	8.0	8.0
.1 7 8.25 10 • 7.4 7.4 10.0 10.0 .5 8 8.84 10 • • 8.5 8.5 10.0 10.0 .6 8 8.75 10 • 8.5 8.5 10.0 10.0 6.0 9 9.27 10 • 9.5 9.5 10.0 10.0 6.1 9 9.19 10 • 9.5 9.5 10.0 10.0 6.2 9 9.10 10 • 9.5 9.5 10.0 10.0 6.3 9 9.02 10 • 9.5 9.5 10.0 10.0 6.4 9 8.93 10 • 9.5 9.5 10.0 10.0 6.5 10 10.24 12 • 10.5 10.5 12.0 12.0 7.0 10 9.81 12 • 10.5 10.5 12.0 12.0 7.5 11 10.07 12 • 11.5	.9		6.92				•					
2	0.0					•	•					
.5 8 8.84 10 ● 8.5 8.5 10.0 10.0 6.0 9 9.27 10 ● 9.55 9.5 10.0 10.0 6.1 9 9.19 10 ● 9.5 9.5 10.0 10.0 6.2 9 9.10 10 ● 9.5 9.5 10.0 10.0 6.3 9 9.02 10 ● 9.5 9.5 10.0 10.0 6.4 9 8.93 10 ● 9.5 9.5 10.0 10.0 6.5 10 10.24 12 ● • 10.5 10.5 12.0 12.0 7.0 10 9.81 12 • • 10.5 10.5 12.0 12.0 7.5 11 10.07 12 • • 11.5 11.5 12.0 12.0 8.0 11 9.81 12 • • 11.5 11.5 12.0 12.0 8.0 11 9.81	.1				•							
6. 8 8.75 10	5.5				•		•					
6.0 9 9.27 10 ● ● 9.5 9.5 10.0 10.0 6.2 9 9.10 10 ● 9.5 9.5 10.0 10.0 6.3 9 9.02 10 ● ● 9.5 9.5 10.0 10.0 6.4 9 8.93 10 ● ● 9.5 9.5 10.0 10.0 6.5 10 10.24 12 ● ● 10.5 10.5 12.0 12.0 7.0 10 9.81 12 ● ● 10.5 10.5 12.0 12.0 7.7 11 10.07 12 ● ● 11.5 11.5 12.0 12.0 7.7 11 10.07 12 ● ● 11.5 11.5 12.0 12.0 8.0 11 9.81 12 ● ● 11.5 11.5 12.0 12.0 8.5 13 11.90 15 ● ● 13.5 13.0 15.0 <t< td=""><td>5.6</td><td>8</td><td>8.75</td><td>10</td><td>-</td><td>-</td><td>•</td><td></td><td>8.5</td><td>8.5</td><td>10.0</td><td>10.0</td></t<>	5.6	8	8.75	10	-	-	•		8.5	8.5	10.0	10.0
6.2 9 9.10 10 ● 9.5 9.5 10.0 10.0 6.4 9 8.93 10 ● 9.5 9.5 10.0 10.0 6.5 10 10.24 12 ● ● 10.5 10.5 12.0 12.0 7.5 11 10.24 12 ● ● 11.5 11.5 12.0 12.0 7.7 11 10.07 12 ● ● 11.5 11.5 12.0 12.0 7.7 11 10.07 12 ● ● 11.5 11.5 12.0 12.0 8.0 11 9.81 12 ● ● 11.5 11.5 12.0 12.0 8.1 11 9.72 12 ● ● 11.5 11.5 12.0 12.0 8.5 13 11.90 15 ● ● 13.5 13.0 15.0 12.0 9.0 13 11.48 15 ● ● 13.5 13.0 15.0 12.0 <td>6.0</td> <td></td> <td>9.27</td> <td></td> <td>•</td> <td>•</td> <td>•</td> <td></td> <td>9.5</td> <td>9.5</td> <td>10.0</td> <td>10.0</td>	6.0		9.27		•	•	•		9.5	9.5	10.0	10.0
6.3 9 9.02 10 ● 9.5 9.5 10.0 10.0 6.4 9 8.93 10 ● 9.5 9.5 10.0 10.0 6.5 10 10.24 12 ● ● 10.5 10.5 12.0 12.0 7.0 10 9.81 12 ● ● 10.5 10.5 12.0 12.0 7.5 11 10.04 12 ● ● 11.5 11.5 12.0 12.0 8.0 11 9.81 12 ● ● 11.5 11.5 12.0 12.0 8.1 11 9.72 12 ● ● 11.5 11.5 12.0 12.0 8.5 13 11.90 15 ● ● 13.5 13.0 15.0 12.0 9.0 13 11.48 15 ● ● 13.5 13.0 15.0 12.0 9.5 14 11.90 15 ● ● 14.5 13.0 15.0 12.0 <td>6.1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td>	6.1						•					
6.4 9 8.93 10												
6.5 10 10.24 12							•					
7.0 10 9.81 12 ● ● 10.5 10.5 12.0 12.0 7.5 11 10.24 12 ● ● 11.5 11.5 12.0 12.0 8.0 11 9.81 12 ● ● 11.5 11.5 12.0 12.0 8.1 11 9.72 12 ● ● 11.5 11.5 12.0 12.0 8.5 13 11.90 15 ● ● 13.5 13.0 15.0 12.0 9.0 13 11.48 15 ● ● 13.5 13.0 15.0 12.0 9.5 14 11.90 15 ● ● 14.5 13.0 15.0 12.0 9.5 14 11.90 15 ● ● 14.5 13.0 15.0 12.0 10.0 15 11.48 15 ● ● 14.5 13.0 15.0 15.0	6.5		10.24		•		•	•				
7.7 11 10.07 12 ■ 11.5 11.5 12.0 12.0 8.0 11 9.81 12 ■ ■ 11.5 11.5 12.0 12.0 8.1 11 9.72 12 ■ ■ 11.5 11.5 12.0 12.0 8.5 13 11.90 15 ■ ■ 13.5 13.0 15.0 12.0 9.0 13 11.48 15 ■ ■ 13.5 13.0 15.0 12.0 9.5 14 11.90 15 ■ ■ 14.5 13.0 15.0 12.0 0.5 15 11.90 15 ■ ■ 14.5 13.0 15.0 12.0 0.5 15 11.90 15 ■ ■ 15.5 13.0 15.0 15.0 1.5 16 11.90 15 ■ 15.5 13.0 15.0 15.0 2.5 17 11.90 15 ■ 16.5 13.0 15.0 15.0 </td <td>7.0</td> <td></td> <td>9.81</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10.5</td> <td>10.5</td> <td>12.0</td> <td>12.0</td>	7.0		9.81						10.5	10.5	12.0	12.0
8.0 11 9.81 12 • • 11.5 11.5 12.0 12.0 8.1 11 9.72 12 • • 11.5 11.5 12.0 12.0 9.0 13 11.48 15 • • 13.5 13.0 15.0 12.0 9.5 14 11.90 15 • • 14.5 13.0 15.0 12.0 0.0 14 11.48 15 • • 14.5 13.0 15.0 12.0 0.5 15 11.90 15 • • 15.5 13.0 15.0 12.0 0.5 15 11.90 15 • • 15.5 13.0 15.0 12.0 1.5 16 11.90 15 • 15.5 13.0 15.0 15.0 1.5 16 11.90 15 • 16.5 13.0 15.0 15.0 2.0 16 11.48 15 • 17.5 13.0 15.0 15.0 <td>7.5</td> <td></td> <td></td> <td></td> <td>•</td> <td>•</td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td>	7.5				•	•	•					
8.1 11 9.72 12 • 11.5 11.5 12.0 12.0 8.5 13 11.90 15 • • 13.5 13.0 15.0 12.0 9.0 13 11.48 15 • • 13.5 13.0 15.0 12.0 9.5 14 11.90 15 • 14.5 13.0 15.0 12.0 0.0 14 11.48 15 • 14.5 13.0 15.0 12.0 0.5 15 11.90 15 • 15.5 13.0 15.0 15.0 1.0 15 11.48 15 • 15.5 13.0 15.0 15.0 1.5 16 11.90 15 • 16.5 13.0 15.0 15.0 2.0 16 11.48 15 • 16.5 13.0 15.0 15.0 2.5 17 11.90 15 • 17.5 13.0 15.0 15.0 3.0 17 11.48 15 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>						_		_				
8.5 13 11.90 15 • • 13.5 13.0 15.0 12.0 9.0 13 11.48 15 • • 13.5 13.0 15.0 12.0 9.5 14 11.90 15 • • 14.5 13.0 15.0 12.0 0.0 14 11.48 15 • • 14.5 13.0 15.0 12.0 0.5 15 11.90 15 • • 15.5 13.0 15.0 15.0 1.0 15 11.48 15 • • 16.5 13.0 15.0 15.0 1.5 16 11.90 15 • 16.5 13.0 15.0 15.0 2.0 16 11.48 15 • 16.5 13.0 15.0 15.0 2.5 17 11.90 15 • 17.5 13.0 15.0 15.0 3.0 17 11.48 15 • 17.5 13.0 15.0 15.0												
9.0 13 11.48 15	8.5					•						
0.0 14 11.48 15 ● ● 14.5 13.0 15.0 12.0 0.5 15 11.90 15 ● 15.5 13.0 15.0 15.0 1.0 15 11.48 15 ● 15.5 13.0 15.0 15.0 1.5 16 11.90 15 ● 16.5 13.0 15.0 15.0 2.0 16 11.48 15 ● 16.5 13.0 15.0 15.0 2.5 17 11.90 15 ● 17.5 13.0 15.0 15.0 3.0 17 11.48 15 ● ● 17.5 13.0 15.0 15.0 3.5 18 11.90 15 ● ● 18.5 13.0 15.0 15.0 4.0 18 11.48 15 ● ● 18.5 13.0 15.0 15.0 4.5 19 11.90 15 ● 19.5 13.0 15.0 15.0 5.0 19	9.0	13	11.48	15				•	13.5	13.0	15.0	12.0
0.5 15 11.90 15 15.0 <t< td=""><td>9.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	9.5											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					•	•		•				
1.5 16 11.90 15 ■ 16.5 13.0 15.0 15.0 2.0 16 11.48 15 ■ 16.5 13.0 15.0 15.0 2.5 17 11.90 15 ■ 17.5 13.0 15.0 15.0 3.0 17 11.48 15 ■ ■ 17.5 13.0 15.0 15.0 3.5 18 11.90 15 ■ 18.5 13.0 15.0 15.0 4.0 18 11.48 15 ■ 18.5 13.0 15.0 15.0 4.5 19 11.90 15 ■ 19.5 13.0 15.0 15.0 5.0 19 11.48 15 ■ 19.5 13.0 15.0 15.0 6.0 20 11.48 15 ■ 20.5 13.0 15.0 15.0 7.0 21 11.48 15 ■ ● 21.5 16.0 15.0 15.0 8.0 22 11.48 15												
2.0 16 11.48 15 ■ 16.5 13.0 15.0 15.0 2.5 17 11.90 15 ■ 17.5 13.0 15.0 15.0 3.0 17 11.48 15 ■ ■ 17.5 13.0 15.0 15.0 3.5 18 11.90 15 ■ 18.5 13.0 15.0 15.0 4.0 18 11.48 15 ■ 18.5 13.0 15.0 15.0 4.5 19 11.90 15 ■ 19.5 13.0 15.0 15.0 5.0 19 11.48 15 ■ 19.5 13.0 15.0 15.0 5.5 20 11.90 15 ■ 20.5 13.0 15.0 15.0 6.0 20 11.48 15 ■ 20.5 13.0 15.0 15.0 7.0 21 11.48 15 ■ 21.5 16.0 15.0 15.0 8.0 22 11.48 15 ■												
2.5 17 11.90 15 ■ 17.5 13.0 15.0 15.0 3.0 17 11.48 15 ■ ■ 17.5 13.0 15.0 15.0 3.5 18 11.90 15 ■ 18.5 13.0 15.0 15.0 4.0 18 11.48 15 ■ 18.5 13.0 15.0 15.0 4.5 19 11.90 15 ■ 19.5 13.0 15.0 15.0 5.0 19 11.48 15 ■ 19.5 13.0 15.0 15.0 5.5 20 11.90 15 ■ 20.5 13.0 15.0 15.0 6.0 20 11.48 15 ■ 20.5 13.0 15.0 15.0 7.0 21 11.48 15 ■ 21.5 16.0 15.0 15.0 8.0 22 11.48 15 ■ 22.5 16.0 15.0 15.0 9.5 25 12.66 15 ■							•	•				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.5	17	11.90	15			•		17.5	13.0	15.0	15.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.0				•	•		•				
4.5 19 11.90 15 ■ 19.5 13.0 15.0 15.0 5.0 19 11.48 15 ■ ■ 19.5 13.0 15.0 15.0 5.5 20 11.90 15 ■ 20.5 13.0 15.0 15.0 6.0 20 11.48 15 ■ ■ 20.5 13.0 15.0 15.0 7.0 21 11.48 15 ■ 21.5 16.0 15.0 15.0 8.0 22 11.48 15 ■ 22.5 16.0 15.0 15.0 9.0 23 11.48 15 ■ 23.5 16.0 15.0 15.0 9.5 25 12.66 15 ■ 25.5 16.0 15.0 15.0			11.90				•	_				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							•	•				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.5	20	11.90	15			•		20.5	13.0	15.0	15.0
8.0 22 11.48 15 • 22.5 16.0 15.0 15.0 9.0 23 11.48 15 • 23.5 16.0 15.0 15.0 9.5 25 12.66 15 • 25.5 16.0 15.0 15.0						•						
9.0 23 11.48 15 • 23.5 16.0 15.0 15.0 9.5 25 12.66 15 • 25.5 16.0 15.0 15.0					•							
9.5 25 12.66 15								•				
	20.0											

Instrucciones de montaje

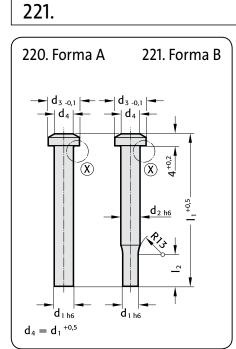
Descripción

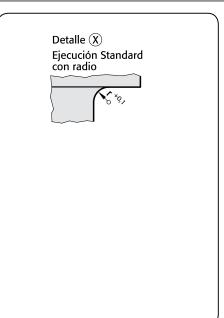
Los punzones de corte redondos DIN 9844 tienen su aplicación en útiles de punzón flotante, con juego suficiente entre el punzón de corte y su alojamiento en la placa guía-punzones, de manera que se evitan las fuerzas de flexión que pueden aparecer a causa de una falta de alineación en los casos de


- a) montaje rígido
- b) centraje forzado por el asiento de la cabeza.

En consecuencia, en la técnica de corte es correcto separar las funciones de guiar y de transmisión de fuerza de los punzones. A fin de hacer posible montar en el mismo útil punzones de diferentes diámetros de caña, hemos adoptado la norma de fabricar todos con la misma altura de cabeza, independientemente del diámetro de la caña.

Directrices:


Extracto de DIN 9844 en la página 5. d_1 máx. = espesor de la chapa s Fuerza de retroceso con d_1 de 1 a 5 mm


- = 20 % de la fuerza de corte con d_1 de 5,1 a 16 mm = 10 % de la fuerza de corte
- Material a cortar: máx. τ_B = 400 N/mm² Placa porta-punzones de St. 50-2 con σ_D admis. = 300 N/mm² En la placa de alojamiento de la caña del punzón, el orificio para ésta deberá ser de 1,05 x d_1 , y en los de mecha 1,05 x d_2 . El juego entre la cabeza del punzón y la placa de presión deberá ser 0.02 mm.

220.

Punzones de corte de precisión DIN 9844 formas A y B

Material:

HSS Código: Forma A = 220.3., Forma B = 221.3.

Caña 64±2 HRc Dureza:

Cabeza 52±3 HRc

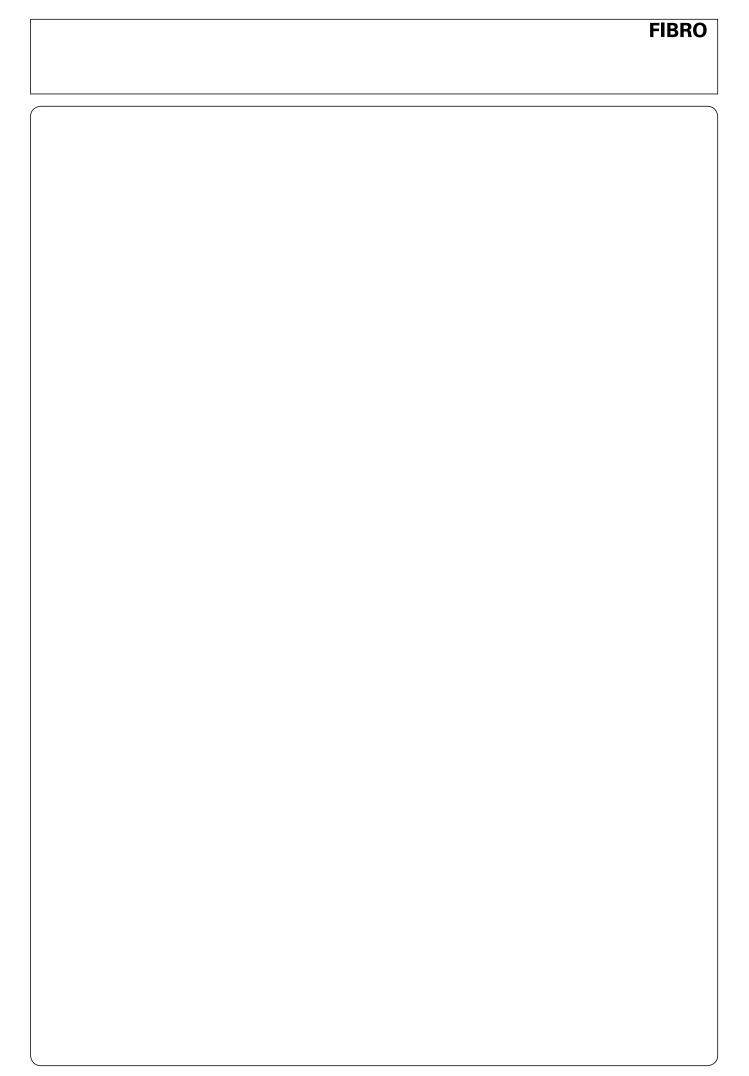
HST

Código: Forma A = 220.4., Forma B = 221.4.

Superficie Dureza: ≥950 HV 0,3 52±3 HRc Cabeza

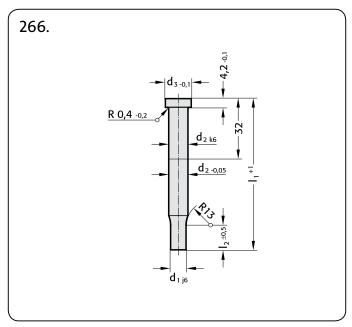
Ejecución:

Cabeza recalcada en caliente. Las superficies de contacto y de la caña en rectificado fino en «plongée».


Ejemplo de pedido:

Punzón de corte A	= 220.
Punzón de corte B	= 221.
Material HSS	= 3.
$d_1 = \emptyset$ 7,0 mm	= 0700.
l ₁ = 71 mm	= 071
Código	= 220.3.0700.071
Código	= 221.3.0700.071

Para otros materiales y descripciones, véanse páginas E 10-E 11.


220. Forma <i>A</i>	4			
	Escalonamientos			
d_1	d_1	d₃	r	l ₁
2,0 - 2,2	0,1	3,6	0,2	
2,3 - 2,5		4,0		
2,6 - 2,8		4,5	0,3	
2,9 - 3,2		5,0		Ē
2,6 - 2,8 2,9 - 3,2 3,3 - 3,5		6,0		112 0s
3,6 - 4,0		7,0		
4,1 - 4,5		8,0	0,5	disponibles: 71, 90 y 112 mm. longitudes y diámetros sobre demanda.
4,6 - 5,0		8,5		t, iii b
5,1 - 5,4		9,0		ss: s y
5,5 - 5,9		9,5		ible
6,0 - 6,4		10,0		on itu
6,5 + 7,0	0,5	10,8	0,7	ng n
7,5 + 8,0		12,0		_ ip o s
8,5 + 9,0		13,0		Longitudes Otras l
9,5 +10,0		14,5		_ \$\$
10,5 +11,0		16,0	1,0	ngu
11,5 –12,5		18,0	-	_ 의
13,0 –14,5		20,0		
15,0 -16,0		22,0		
i				

221. Forma	В					
	– alonamiei	ntos				
d_1	d_1	d ₂	d_3	l_2	r	l ₁
0,1 - 0,45	0,05	2,0	3,6	7	0,2	
0,5 - 1,9						<u>.</u>
1,95 - 2,4		2,5	4,0			Longitudes disponibles a corto plazo: 71, 90 y 112 mm. S longitudes y diametros sobre demanda.
2,5 - 3,1	0,1	3,2	5,0		0,3	320 320
3,2 - 3,9		4,0	7,0			p p
4,0 - 4,9		5,0	8,5		0,5	rto bre
5,0 - 6,2		6,3	10,0			_ 8 - 8
6,3 - 7,9		8,0	12,0	16	0,7	- s a
8,0 - 9,9		10,0	14,5			- 12 i
10,0 -12,4		12,5	18,0		1,0	_ iii _ E
12,5 -15,9		16,0	22,0			_ <u>8</u> 899
						_ igi., S
						_ des
						tuc - Zitu
						_ igi
						- Lor s lc
						Longitudes di 71, Otras longitudes y
						_ 0
-						

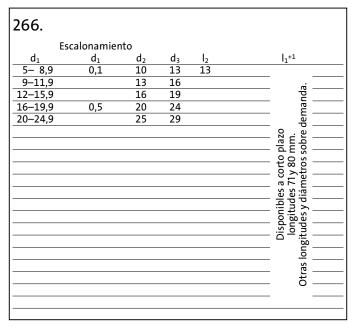
266.

Punzones de corte de precisión similares a VDI 3374

Material:

Código: 266.3. 62±2 HRc Caña Dureza:

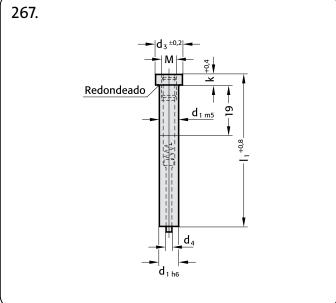
Cabeza 45±5 HRc


Para otros materiales y descripciones, véanse páginas € 10−€ 11.

Ejecución:

Cabeza recalcada en caliente. Las superficies de contacto y de la caña en rectificado fino en «plongée».

Ejemplo de pedido:


Punzón de corte = 266. Material HWS: $\frac{d_1 = \emptyset \text{ 8,0 mm}}{l_1 = 71 \text{ mm}}$ Código 0800. = 266.3.0800.071

Punzones de corte de precisión con expulsor

267.

Ejecución:

Cabeza recalcada en caliente. Las superficies de contacto y de la caña en rectificado fino en «plongée».

Ejemplo de pedido:

Punzón de corte	= 267.	
Material HSS	= 3.	
$d_1 = \emptyset 8,0 \text{ mm}$	= 0800.	
$I_1 = 71 \text{ mm}$	= 071	
Código	= 267.3.0800.071	

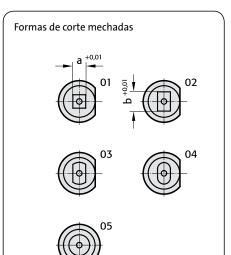
Material:

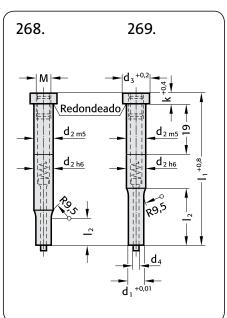
HSS

 Código:
 267.3.

 Dureza:
 Caña Cabeza
 64±2 HRc 52±3 HRc

Para otros materiales y descripciones, véanse páginase 10 – $\rm E$ 11.


267.


						1		
d _{1-h6}	d₃	d_4	k	60	71	80	90	M
5	8	0,5	5	•	•			M 3
6	9	0,8		•	•	•	•	
8	11	1,3		•	•	•	•	M 4
10	13			•	•	•	•	
13	16	1,6		•	•	•	•	M 5
16	19	2,4	6,4	•	•	•	•	M 6
20	23			•	•	•	•	
25	28	3,2		•	•	•	•	

268.

269.

Punzones de corte de precisión con expulsor de mecha corta y larga

Material:

268.3. (mecha corta) 64±2 HRc Código:

Dureza: Caña 52±3 HRc

Cabeza

HSS

Código: 269.3. (mecha larga) 64±2 HRc Dureza:

Caña 52±3 HRc Cabeza

Ejecución:

Cabeza recalcada en caliente. Las superficies de contacto y de la caña en rectificado fino en «plongée».

El plano de guía, salvo indicación en contra, es realizado paralelamente a la medida «b» – del lado más largo del perfil.

Ejemplo de pedido:

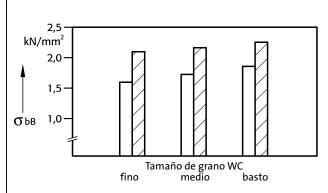
Punzón de corte con expulsor = 268. **Material HSS** 0800. d₂ = 8,0 mm I₁ = 71 mm Forma de corte 05 071. $\frac{d_1 = 6,0 \text{ mm}}{C\acute{o}digo}$ 0600 = 268.3.0800.071.05.0600

Para otros materiales y descripciones, véanse páginas ε 10 – ε 11.

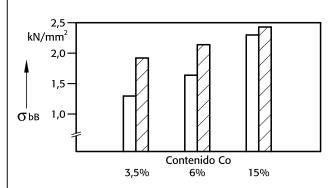
				268.	269.						
							ı	1			
d_2	d₃	d_4	k	I_2	I_2	60	71	80	90	a min.	Μ
5	8	0,5	5	7	_	•	•			1,6	M 3
6	9	0,8				•	•	•	•	2,3	
8		1,3		13		•	•	•	•	3,2	M 4
10					28	•	•	•	•	4,8	
13		1,6				•	•	•	•		M 5
16		2,4	6,4			•		•	•	5,5	M 6
						•		•	•		
25	28	3,2				•	•	•	•	6,5	
	6 8 10 13	5 8 6 9 8 11 10 13 13 16 16 19 20 23	5 8 0,5 6 9 0,8 8 11 1,3 10 13 13 16 1,6 16 19 2,4 20 23	5 8 0,5 5 6 9 0,8 8 11 1,3 10 13 13 16 1,6 16 19 2,4 6,4 20 23	d2 d3 d4 k l2 5 8 0,5 5 7 6 9 0,8 8 11 1,3 13 10 13 13 16 1,6 16 19 2,4 6,4 20 23 23 23 6,4 20 23	5 8 0,5 5 7 - 6 9 0,8 17,5 8 11 1,3 13 25 10 13 28 13 16 1,6 16 19 2,4 6,4 20 23	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Metal duro – con compactado isotérmico ulterior en caliente (HIP)

El tratamiento HIP (Hot Isostatic Pressing) consiste en un prensado ulterior isostático en caliente, posterior al sinterizado, de


Metales duros WC – Co

En este proceso, muy extendido en la tecnología de metales duros, el material ya sinterizado es sometido a un compactado ulterior en un horno de alta temperatura a una temperatura inferior a la de sinterización, y a presiones muy elevadas (1,2 a 3 kbar).


La disminución de la porosidad del metal proporciona a éste una mejora de la resistencia, y por consiguiente una más larga duración de los útiles en aplicaciones de deformación (sin arranque de viruta).

Además de aumentar la resistencia a la presión, mejora sobre todo la resistencia a la flexión, como se deduce de los siguientes gráficos y tablas

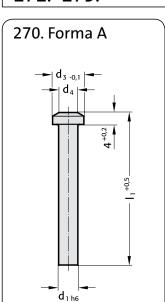
En los trabajos de chapa se da preferencia, en un amplio campo de aplicaciones, a las variedades de metal duro de un tamaño mediano de grano WC, con un 9 al 12% de componente Co.

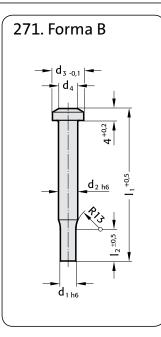
 a) Efecto del tamaño del cristalizado del metal duro en estado sinterizado + HIP-tratado (1350°C/2 kbar argón).

 Efecto del contenido de cobalto, prueba realizada como en el gráfico a)

Resistencia a la flexión s_{bB} de una aleación WC-6Co sinterizada y HIP-tratado, en dependencia de varios factores ajenos. Porosidad del material sinterizado: \geqq A1

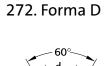
columnas lisas: sinterizado columnas rayadas: HIP-tratado

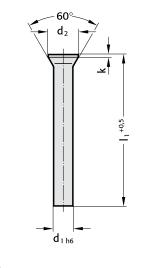

Tamaño de grano	Co %	Dure HV		Resistencia a la flexión N/mm²			
WC	, -	antes	después	antes	después		
fino	3	1800		1200	1700		
	6	1650		1500	2300		
	9	1400		2000	2600		
medio	6	1600		2000	2600		
	9	1450	Sin	2350	2700		
	12	1300	alte-	2450	2900		
	15	1200	ración	2700	2850		
basto	6	1400	1	1900	2250		
	8	1350		2300	2600		
	10	1200]	2650	2850		

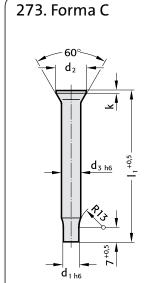

Alteraciones beneficiosas en los metales duros WC-Co gracias al compactado isostático en caliente

270. 272.

271. 273.


Punzones de corte de metal duro similares a DIN 9844 – DIN 9861





Material:

Metal duro

Código: Forma A = 270.9., Forma B = 271.9.

Forma D = 272.9., Forma C = 273.9.

Medidas:

véanse DIN 9844 y DIN 9861 en páginas E12, E13, E14, E15 y E21. Otros diámetros y longitudes sobre demanda.

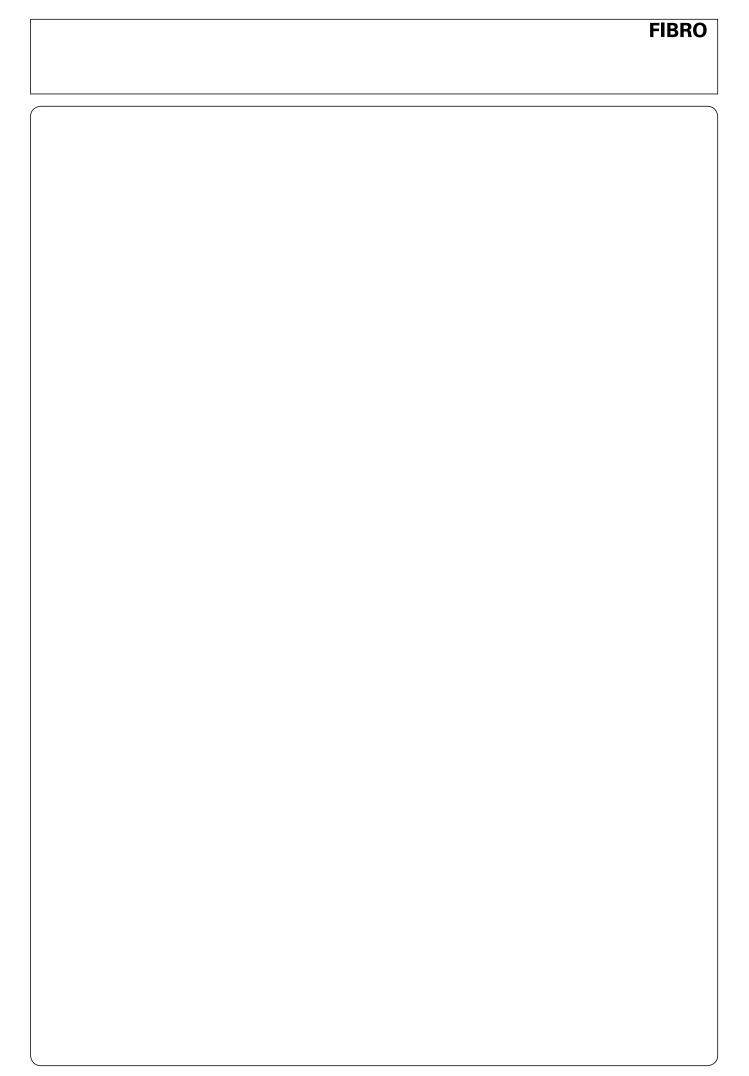
Suministro:

270.

Forma A desde $d_1 = 1,0 \text{ mm}$

272.

Forma D desde $d_1 = 1,5 \text{ mm}$


Ejecución:

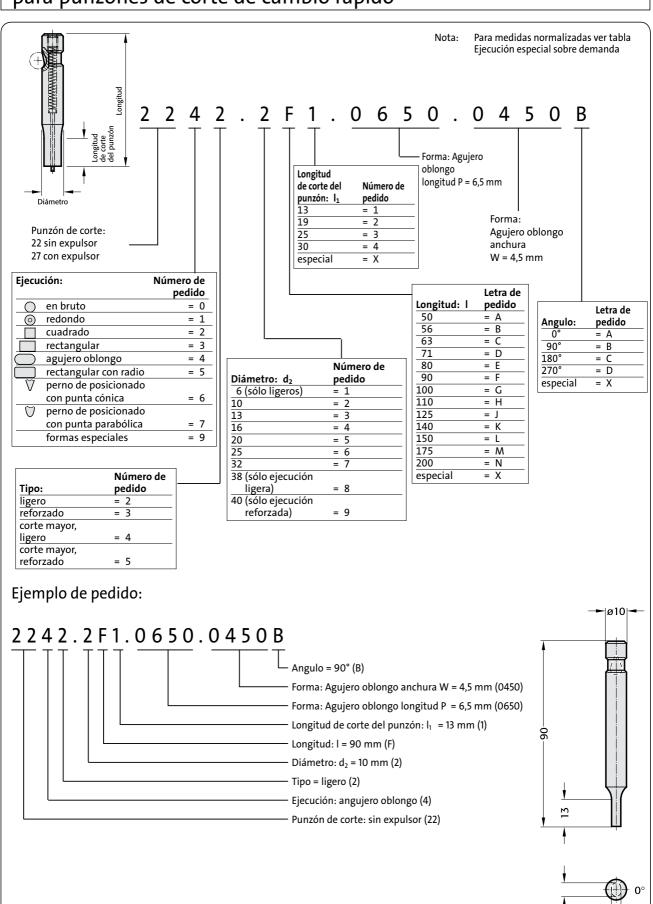
Caña en rectificado fino. Cabeza acero, soldada.

Ejemplo de pedido:

Punzón de corte = 272.

Material HM = 9. $d_1 = \emptyset 6,0 \text{ mm} = 0600.$ $l_1 = 71 \text{ mm} = 071$ Código = 272.9.0600.071

Punzones de corte de precisión de cambio rápido

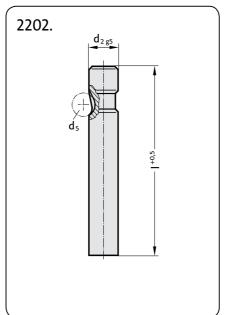

Nos reservamos el derecho de hacer modificaciones

E29

FIBRO

Nos reservamos el derecho de hacer modificaciones

Ejemplos de pedido para punzones de corte de cambio rápido

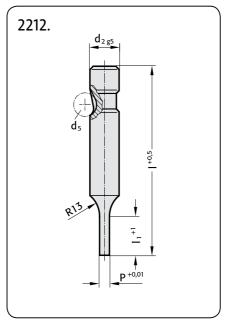


Punzones de corte de cambio rápido para trabajos ligeros en bruto con mecha

FIBRO

2202. 2212.

Material:


HSS templado: 62 ± 2 HRC

Ejecución:

Caña en rectificado fino.

Otras longitudes sobre demanda.

Material:

HSS templado: 62 ± 2 HRC

Ejecución:

Caña y diámetro de corte en rectificado fino

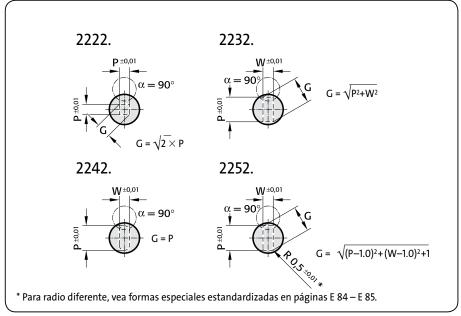
 $Otras\ longitudes\ sobre\ demanda.$

02.							I				
d_5	63	71	80	90	100	110	125	140	150	175	200
6											
8	•	•	•	•	•	•	•				
8	•	•	•	•	•	•	•	•	•	•	
8	•	•	•	•	•	•	•	•	•	•	
8	•	•	•	•	•	•	•	•	•	•	
8	•	•	•	•	•	•	•	•	•	•	•
8		•	•	•	•	•	•	•	•	•	•
8			•	•	•	•	•	•	•	•	•
	d ₅ 6 8 8 8 8 8	d ₅ 63 6	d₅ 63 71 6 • • 8 • • 8 • • 8 • • 8 • • 8 • • 8 • • 8 • • 8 • •	d ₅ 63 71 80 6 ● ● ● 8 ● ● ● 8 ● ● ● 8 ● ● ● 8 ● ● ● 8 ● ● ● 8 ● ● ● 8 ● ● ●	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Ejemplo	de	pedido:
---------	----	---------

vea página desplegable E 31.

22	12.							1		
d₂	d₅	Р		I_1		63	71	80	90	100
6	6	1,6- 5,9	13*			•	•	•	•	•
10	8	1,6- 9,9	13*	19*		•	•	•	•	•
13	8	5,0-12,9	13	19		•	•	•	•	•
16	8	8,0-15,9	13	19	25	•	•	•	•	•
20 25	8	12,0-19,9	13	19	25	•	•	•	•	•
25	8	16,0-24,9	13	19	25	•	•	•	•	•
32	8	24,0-31,9	13	19	25		•	•	•	•
38	8	30,0-37,9	19	25	30			•	•	•

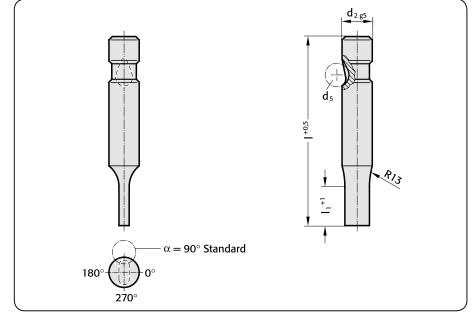

* I₁ = 10 con P < 2,20

Ejemplo de pedido:

vea página desplegable E 31.

2222. 2232.

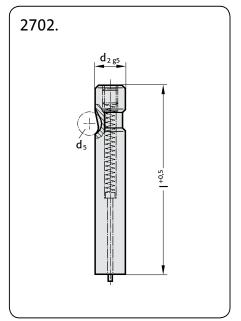
2242. 2252. Punzones de corte de cambio rápido con mecha de forma, para trabajos ligeros


Material:

62 ± 2 HRC templado:

Ejecución:

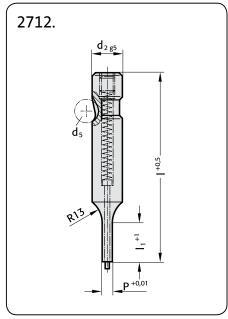
Caña y forma de corte en rectificado fino.


Otras longitudes sobre demanda.

٦	٦	14/	C				63	71	80	90	100
<u>d₂</u> 6	d ₅ 6	W _{min.} 1,6	G _{max.} 5,9	13*	11		05	/1	80	90	100
_	8			13*	19*		<u> </u>	<u> </u>	<u> </u>	<u> </u>	
10 13	8	1,6	9,9				<u> </u>	-	-	_	_
		4,5	12,9	13	19		•				
16	8	6,0	15,9	13	19	25	•	•	•	•	•
20	8	8,0	19,9	13	19	25	•	•	•	•	•
25	8	10,0	24,9	13	19	25	•		•	•	
32	8	12,5	31,9	13	19	25		•	•	•	•
38	8	14,0	37,9	19	25	30					
Eie	mp	lo de	pedid	0:							

FIBRO Punzones de corte de cambio rápido, con expulsor, para trabajos ligeros (En sustitución de 2672.) (En sustitución de 2682.) en bruto 2702. con mecha 2712.

Material:


HSS templado: 62 ± 2 HRC

Ejecución:

Caña en rectificado fino.

Otras longitudes sobre demanda.

Material:

62 ± 2 HRC templado:

Ejecución:

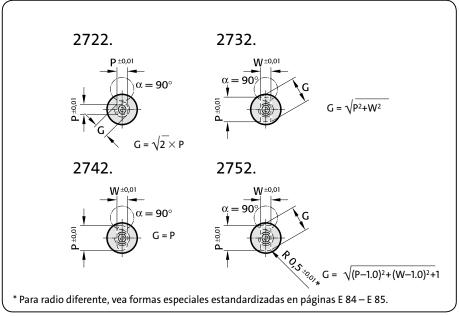
Caña y diametro de corte en rectificado fino.

Otras longitudes sobre demanda.

_		63	71	1	00	100
d ₂	d ₅	63	71	80	90	100
6	6	•	•	•	•	•
10	8	•	<u> </u>	•	<u> </u>	
13	8	•	•	•	•	•
16	8	•	•	•		
20	8	•	•	•	•	
25	8	•	•	•	•	•
32	8		•	•	•	•
38	8			•	•	•

27	12.							I		
d_2	d_5	Р		I_1		63	71	80	90	100
$\frac{d_2}{6}$	6	1,6- 5,9	13*			•	•	•	•	•
10	8	1,6- 9,9	13*	19*		•	•	•	•	•
13	8	5,0-12,9	13	19		•	•	•	•	•
16	8	8,0-15,9	13	19	25	•	•	•	•	•
20	8	12,0-19,9	13	19	25	•	•	•	•	•
25	8	16,0-24,9	13	19	25	•	•	•	•	•
32	8	24,0-31,9	13	19	25		•	•	•	•
38	8	30,0-37,9	19	25	30			•	•	•

* I₁ = 10 con P < 2,20

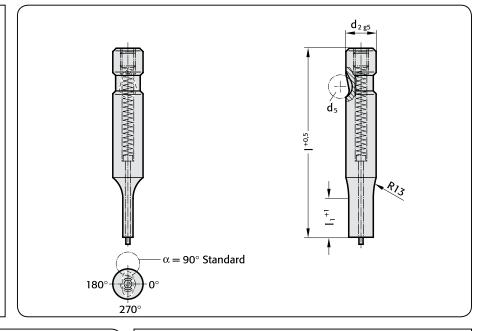

Ejemplo de pedido:

vea página desplegable E 31.

Ejemplo de pedido:

vea página desplegable E 31.

Punzones de corte de cambio rápido con mecha de forma y expulsor, para trabajos ligeros 2722. 2732. 2742. 2752. (En sustitución de 2682.)


Material:

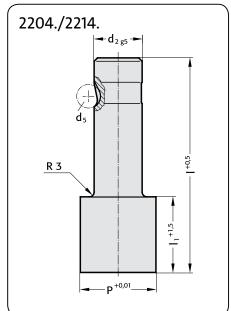
62 ±2 HRC templado:

Ejecución:

Caña y forma de corte en rectificado fino.

Otras longitudes sobre demanda.

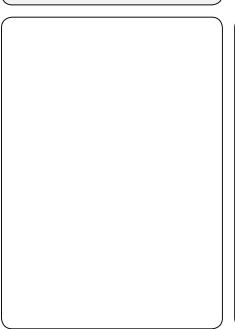
										I		
d_2	d ₅	W _{min.}	G _{max.}	Μ		I_1		63	71	80	90	100
6	6	1,6	5,9	3	13*							
10	8	1,6	9,9	5	13*	19*		•	•	•	•	•
13	8	4,5	12,9	5	13	19						
16	8	6,0	15,9	6	13	19	25	•	•	•	•	•
20	8	8,0	19,9	6	13	19	25					•
25	8	10,0	24,9	6	13	19	25					
32	8	12,5	31,9	8	13	19	25		•			•
38	8	14,0	37,9	8	19	25	30					•
	- 10 C	on P o W	7 \ 2,20									
-	•	lo de	•									

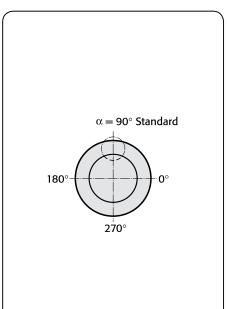

E35

Punzones de corte de cambio rápido con el diámetro de corte mayor que la caña para trabajos ligeros

FIBRO

2204. 2214.


Material:


HSS templado: 62 ±2 HRC

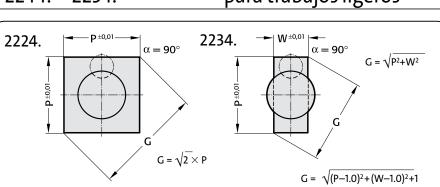
Ejecución:

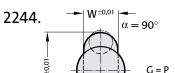
Caña y diámetro de corte en rectificado fino.

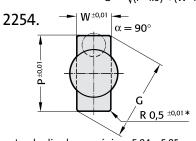
Otras longitudes sobre demanda.

	d ₅	Р	1	1	80	90	100
l ₂ .3	8 8	32,0	19	30	80	90	100
L6	8	38,0	19	30		<u> </u>	$\overline{}$
20	8	40,0	19	30	Ť	Ť	÷
25	8	44,0	19	30	•	•	•
32	8	50,0	19	30	•	•	•

2214. I								
d_2	d_5	Р	1	1	80	90	100	
d ₂ 13	8	13,1 - 32,0	19	30	•	•	•	
	8	16,1 - 38,0	19	30	•	•	•	
20	8	20,1 - 40,0	19	30	•	•	•	
16 20 25 32	8	25,1 - 44,0	19	30	•	•	•	
32	8	32,1 - 50,0	19	30	•	•	•	


Ejemplo de pedido: vea página desplegable E 31.


vea página desplegable E 31.

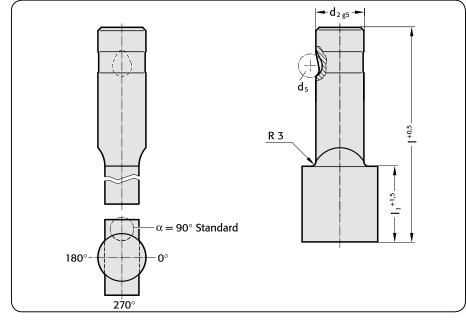

2224. 2234.

2244. 2254.

Punzones de corte de cambio rápido con el diámetro de corte mayor que la caña para trabajos ligeros

* Para radio diferente, vea formas especiales estandardizadas en páginas E 84 – E 85.

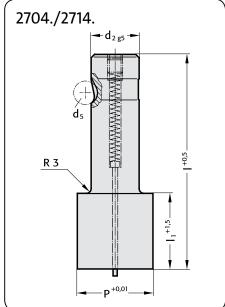
Material:


HSS

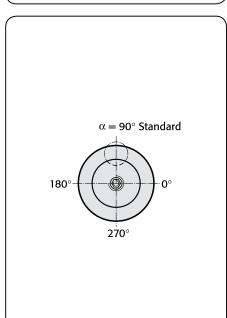
templado: 62 ±2 HRC

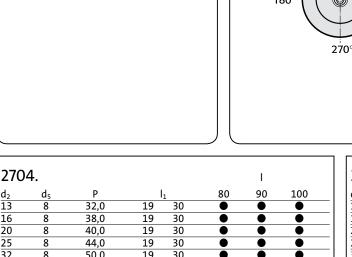
Ejecución:

Caña y forma de corte en rectificado fino.


Otras longitudes sobre demanda.

Punzones de corte de cambio rápido con el diámetro de corte mayor que la caña con expulsor, para trabajos ligeros

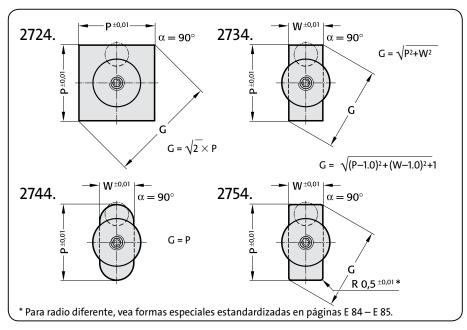

Material:


HSS templado: 62 ±2 HRC

Ejecución:

Caña y diámetro de corte en rectificado fino.

Otras longitudes sobre demanda.


l ₂	d_5	Р	ı	1	80	90	100
13	8	32,0	19	30	•	•	•
16	8	38,0	19	30	•	•	•
20	8	40,0	19	30	•	•	•
25	8	44,0	19	30	•	•	•
32	8	50,0	19	30	•	•	•

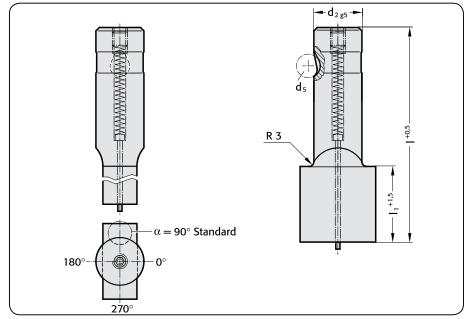
2714.												
d_2	d₅	Р	I_1		80	90	100					
d ₂ 13	8	13,1 – 32,0	19	30	•	•	•					
16	8	16,1 - 38,0	19	30	•	•	•					
20 25	8	20,1 – 38,0	19	30	•	•	•					
25	8	25,1 – 45,0	19	30	•	•	•					
32	8	32,1 - 50,0	19	30	•	•	•					
Ejei	mplo	o de pedid	0:									

2724. 2734.

2744. 2754.

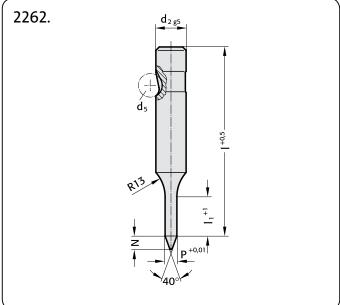
Punzones de corte de cambio rápido con el diámetro de corte mayor que la caña con expulsor, para trabajos ligeros

Material:


HSS

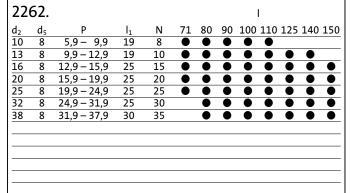
templado: 62 ± 2 HRC

Ejecución:


Caña y forma de corte en rectificado fino.

Otras longitudes sobre demanda.

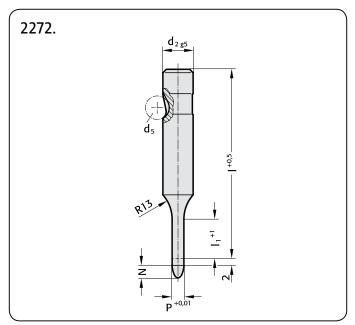
							I		
d_2	d₅	W _{min.}	$G_{\text{max.}}$	- 1	1	80	90	100	
13	8	5,0	32,0	19	30	•	•	•	
16	8	6,5	38,0	19	30	•	•	•	
20	8	8,0	40,0	19	30	•	•	•	_
25	8	10,0	44,0	19	30	•	•	•	
32	8	11,5	50,0	19	30	•	•	•	
									_
									_
									_
									_
									_
									_
Eion	مامم	da nac	lida.						
Ejen	ubio	de pec	iiuo:						
vez กว์	aina de	cnlegable	E 21						


Material:

HSS templado: 62 ± 2 HRC

Ejecución:

Caña y posicionador en rectificado fino.



Otras longitudes sobre demanda.

Ejemplo de pedido:

2272.

Perno de posicionado de cambio rápido con punta parabólica, para trabajos ligeros

«I» longitud del posicionador es sin punta.

Nota: La longitud de 2 mm efectúa un guiado total antes de que el punzón de corte toque la chapa.

Material:

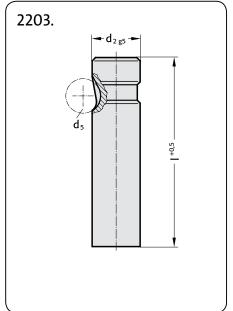
HSS templado: 62 ±2 HRC

Ejecución:

Caña y posicionador en rectificado fino.

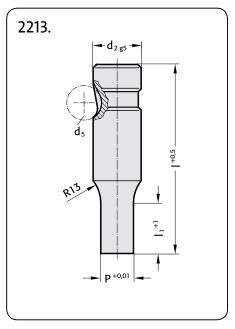
P	N		
≤ 10 mm	8 mm		
10,1 mm - 15 mm	12 mm		
> 15 mm	15 mm		

227		_								
d_2	d ₅	Р	l ₁	50	56	63	71	80	90	100
6	6	2,9 - 5,9	13	•	•	•	•	•	_	•
10	8	5,9 – 9,9	19	•						•
13	8	9,9 – 12,9	19	•	•	•	•	•	•	•
16	8	12,9 – 15,9	25			•	•	•	•	•
20	8	15,9 – 19,9	25			•				•
25	8	19,9 – 24,9	25			•	•	•	•	•
32	8	24,9 – 31,9	25				•	•	•	•
38	8	31,9 – 37,9	30							•
Otra	s long	itudes sobre del	manda.							
Eje	mpl	o de pedio	lo:							


Punzones de corte de cambio rápido, para trabajos duros en bruto con mecha

FIBRO

2203.


Material:

HSS templado: 62 ± 2 HRC

Ejecución:

Caña en rectificado fino.

Material:

templado: 62 ± 2 HRC

Ejecución:

Caña y diámetro de corte en rectificado fino.

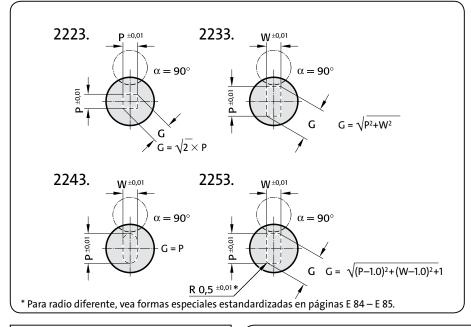
22	03.						- 1					
d ₂	d_5	63	71	80	90	100	110	125	140	150	175	200
10	10					•						
13	12	•	•	•	•	•	•	•	•	•	•	
16	12	•	•	•	•	•	•	•	•	•	•	
20	12	•	•	•	•	•	•	•	•	•	•	
25	12		•	•	•	•	•	•	•	•	•	•
32	12		•	•	•	•	•	•	•	•	•	•
40	12			•	•	•	•	•	•	•	•	•

Otras longitudes sobre demanda.

Ejemplo de pedido:

vea página desplegable E 31.

22	13.						1			
d ₂	d_5	Р	I_1	63	71	80	90	100	110	125
10	10	1,6- 9,9	13* 19*	•	•	•	•	•	•	•
13	12	5,0-12,9	13 19	•	•	•	•	•	•	•
16	12	8,0-15,9	13 19 25	•	•	•	•	•	•	•
20	12	12,0-19,9	13 19 25	•	•	•	•	•	•	•
25	12	16,0-24,9	13 19 25		•	•	•	•	•	•
32	12	24,0-31,9	13 19 25		•	•	•	•	•	•
40	12	30,0-39,9	19 25 30			•	•	•	•	•

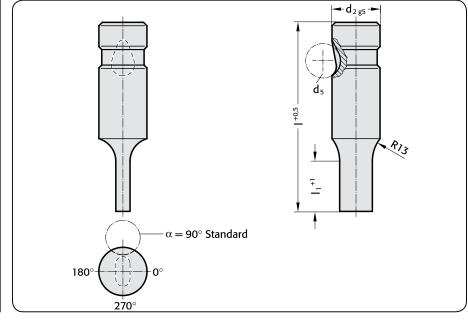

* l₁ = 10 con P < 2,20 Otras longitudes sobre demanda.

Ejemplo de pedido:

2223. 2233.

2243. 2253.

Punzones de corte de cambio rápido con mecha de forma, para trabajos duros


Material:

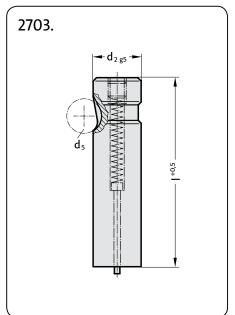
HSS

templado: 62 ± 2 HRC

Ejecución:

Caña y forma de corte en rectificado fino.

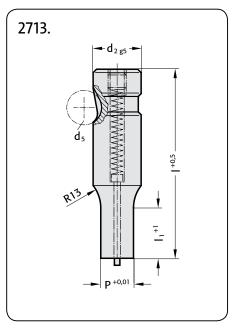
										1			
d_2	d_5	$W_{min.}$	$G_{\text{max.}}$		l ₁		63	71	80	90	100	110	125
10	10	1,6	9,9	13* :	19*		•	•	•	•	•	•	•
13	12	4,5	12,9	13 :	19		•	•	•	•	•	•	•
16	12	6,0	15,9	13 :	19	25	•	•	•	•	•	•	•
20	12	8,0	19,9	13 :	19	25	•	•	•	•	•	•	lacksquare
25	12	10,0	24,9	13 :	19	25		•	•	•	•	•	•
32	12	12,5	31,9	13 :	19	25		•	•	•	•	•	•
40	12	14,0	39,9	19 2	25	30			•	•	•	•	•


* I₁ = 10 con P < 2,20

Otras longitudes sobre demanda.

Ejemplo de pedido:

FIBRO Punzones de corte de cambio rápido con expulsor, para trabajos duros (En sustitución de 2673.) en bruto 2703. (En sustitución de 2683.) con mecha 2713.


Material:

HSS templado: 62 ± 2 HRC

Ejecución:

Caña en rectificado fino.

Material:

62 ±2 HRC templado:

Ejecución:

Caña y diámetro de corte en rectificado fino.

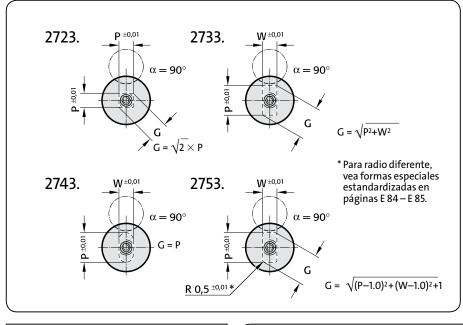
2703	3.				1			
d_2	d_5	63	71	80	90	100	110	125
$\frac{d_2}{10}$ $\frac{13}{16}$	10	•	•	•	•	•		
13	12	•	•	•	•	•	•	•
16	12	•	•	•	•	•	•	•
20	12	•	•	•	•	•	•	•
25	12		•	•	•	•	•	•
20 25 32 40	12		•	•	•	•	•	•
40	12			•	•	•	•	•

Otras longitudes sobre demanda.

Ejemplo de pedido:

vea página desplegable E 31.

27	13.								1			
d ₂	d₅	Р		I_1		63	71	80	90	100	110	125
10	10	1,6- 9,9	13*	19*		•	•	•	•	•		
13	12	5,0-12,9	13	19		•	•	•	•	•	•	•
16	12	8,0-15,9	13	19	25	•	•	•	•	•	•	•
20	12	12,0-19,9	13	19	25	•	•	•	•	•	•	•
25	12	16,0-24,9	13	19	25		•	•	•	•	•	•
32	12	24,0-31,9	13	19	25		•	•	•	•	•	•
40	12	30,0-39,9	19	25	30			•	•	•	•	•

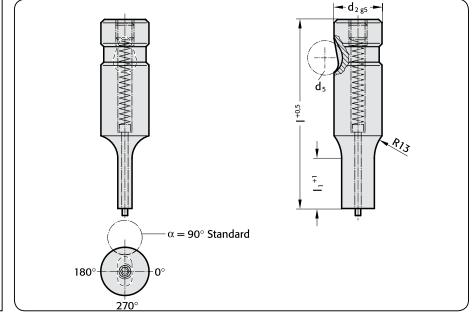

* I₁ = 10 mm con P < 2,20

Otras longitudes sobre demanda.

Ejemplo de pedido:

2723. 2733. 2743. 2753. (En sustitución de 2683.)

Punzones de corte de cambio rápido, con mecha de forma y expulsor, para trabajos duros


Material:

HSS

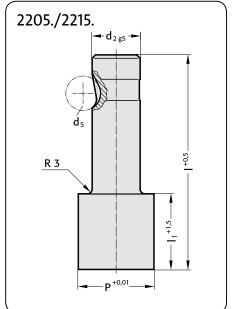
templado: 62 ± 2 HRC

Ejecución:

Caña y forma de corte en rectificado fino.

										1			
d_2	d_5	$W_{min.}$	$G_{max.}$		l_1		63	71	80	90	100	110	125
10	10	1,6	9,9	13*	19*								
13	12	4,5	12,9	13	19		•	•	•	•	•	•	•
16	12	6,0	15,9	13	19	25	•	•	•	•	•	•	•
20	12	8,0	19,9	13	19	25	•	•	•	•	•	•	•
25	12	10,0	24,9	13	19	25		•	•	•	•	•	•
32	12	12,5	31,9	13	19	25							
40	12	14,0	39,9	19	25	30			•	•	•	•	•

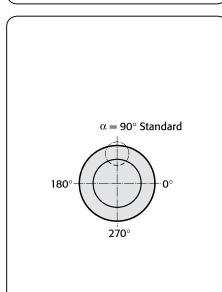
 $* I_1 = 10 \text{ con P o W < 2,20}$

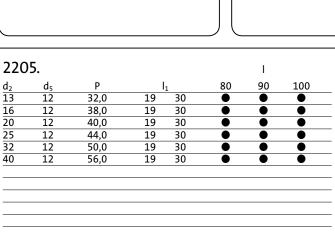

Otras longitudes sobre demanda.

Ejemplo de pedido:

Punzones de corte de cambio rápido con el diámetro de corte mayor que la caña, para trabajos duros

2205. 2215.




Material:

HSS templado: 62 ±2 HRC

Ejecución:

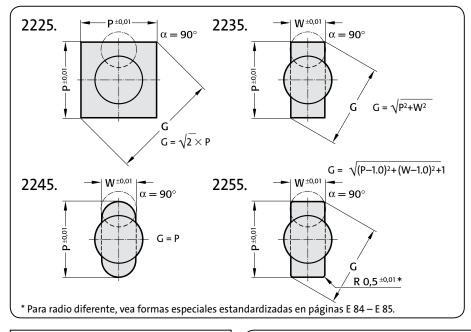
Caña y diámetro de corte en rectificado fino.

Otras longitudes sobre demanda.

Ejemplo de pedido:

vea página desplegable E 31.

d_2 d_5 P d_1 80 90 1	
	.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•
16 12 16,1 – 38,0 19 30	•
20 12 20,1 – 40,0 19 30	•
25 12 25,1 – 44,0 19 30	•
32 12 32,1-50,0 19 30	•
40 12 40,1 – 56,0 19 30	•

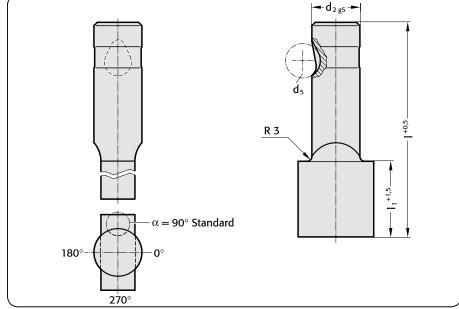

Otras longitudes sobre demanda.

Ejemplo de pedido:

2225. 2235.

2245. 2255.

Punzones de corte de cambio rápido con el diámetro de corte mayor que la caña, para trabajos duros


Material:

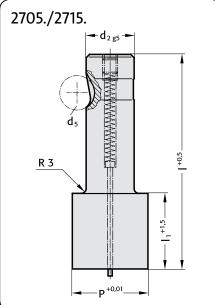
HSS

templado: 62 ± 2 HRC

Ejecución:

Caña y forma de corte en rectificado fino.

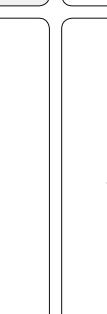
vea página desplegable E 31.

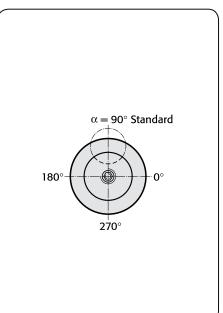


100

Punzones de corte de cambio rápido con el diámetro de corte mayor que la caña, con expulsor, para trabajos duros

FIBRO 2705. 2715.




Material:

HSS templado: 62 ±2 HRC

Ejecución:

Caña y diámetro de corte en rectificado fino.

271		_				
d ₂ 13	d ₅	P 12.1 22.0		1	80	
16	12 12	13,1 – 32,0 16,1 – 38,0	19 19	30 30		
20	12	20,1 – 40,0	19	30		
25	12	25,1 – 44,0	19	30	-	
32	12	32,1 – 50,0	19	30	Ť	
40	12	40,1 – 56,0	19	30	•	

Otras	longitu	des sc	bre de	emanda.

32,0

38,0

40,0

44,0

19

19

19

19

30

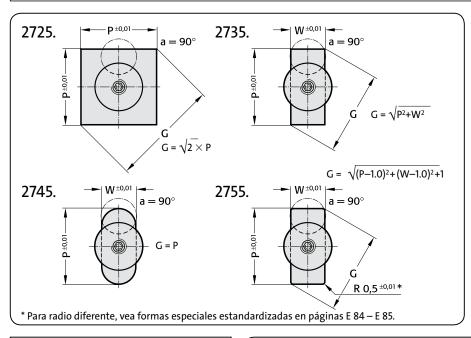
30

Ejemplo de pedido: vea página desplegable E 31.

2705.

12

12

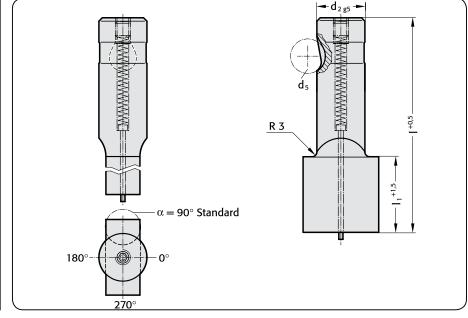

20

100

2725. 2735.

2745. 2755.

Punzones de corte de cambio rápido con el diámetro de corte mayor que la caña, con expulsor, para trabajos duros

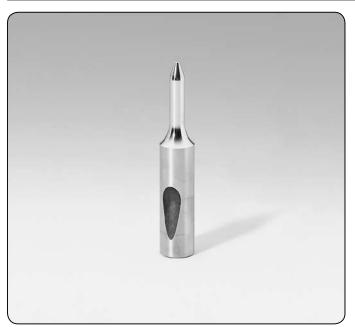

Material:

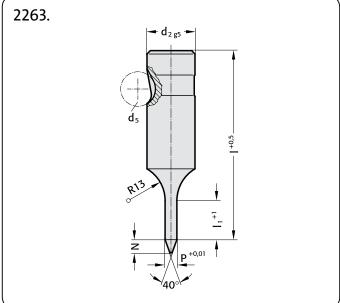
HSS

templado: 62 ± 2 HRC

Ejecución:

Caña y forma de corte en rectificado fino.


							1	
$\underline{d_2}$	d_5	$W_{min.}$	$G_{\text{max.}}$	I	1	80	90	100
13	12	5,0	32,0	19	30	•	•	•
16	12	6,5	38,0	19	30	•	•	•
20	12	8,0	40,0	19	30	•	•	•
25	12	10,0	44,0	19	30	•	•	•
32	12	11,5	50,0	19	30	•	•	•
40	12	14,0	56,0	19	30	•	•	•

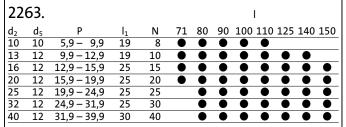

Otras longitudes sobre demanda.

Ejemplo de pedido: vea página desplegable E 31.

Perno de posicionado de cambio rápido con punta cónica, para trabajos duros

2263.

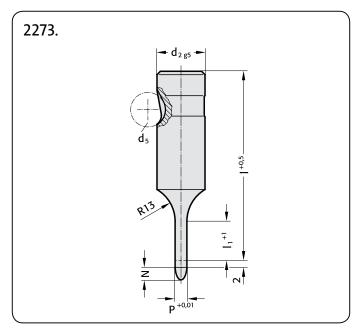
Material:


HSS

templado: 62 ± 2 HRC

Ejecución:

Caña y posicionador en rectificado fino.



Otras longitudes sobre demanda.

Ejemplo de pedido:

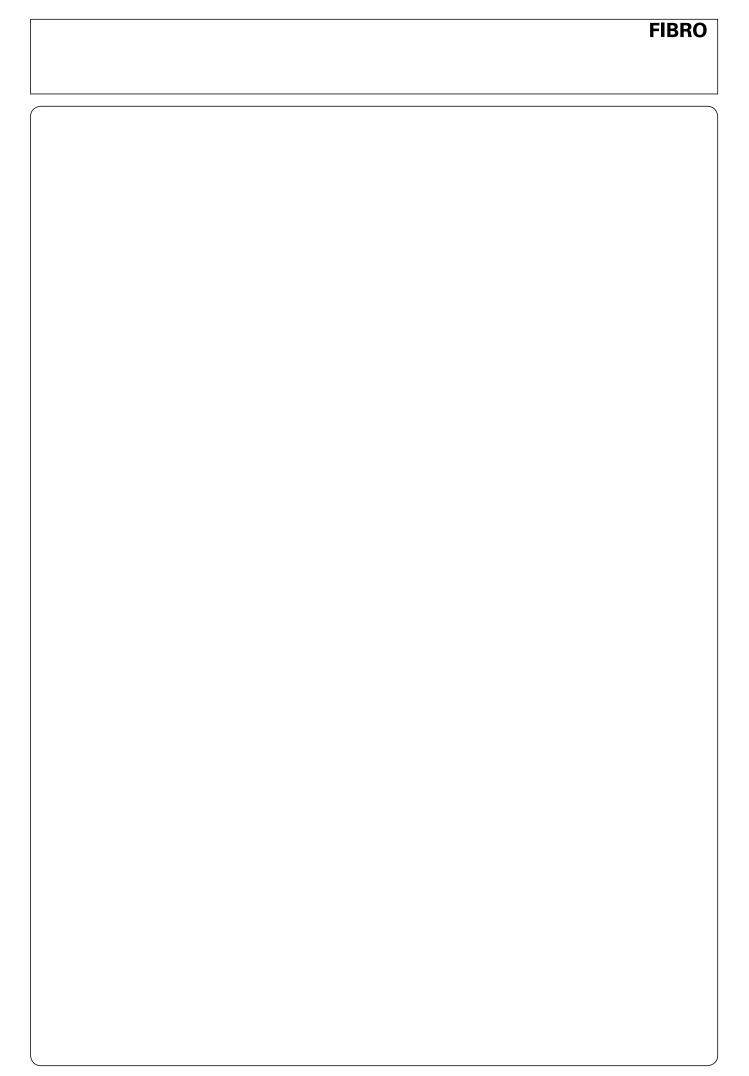
2273.

Perno de posicionado de cambio rápido con punta parabólica, para trabajos duros

«l» longitud del posicionador sin punta.

Nota: La longitud de 2 mm efectúa un guiado total antes de que el punzón de corte toque la chapa.

Material:


HSS templado: 62 ± 2 HRC

Ejecución:

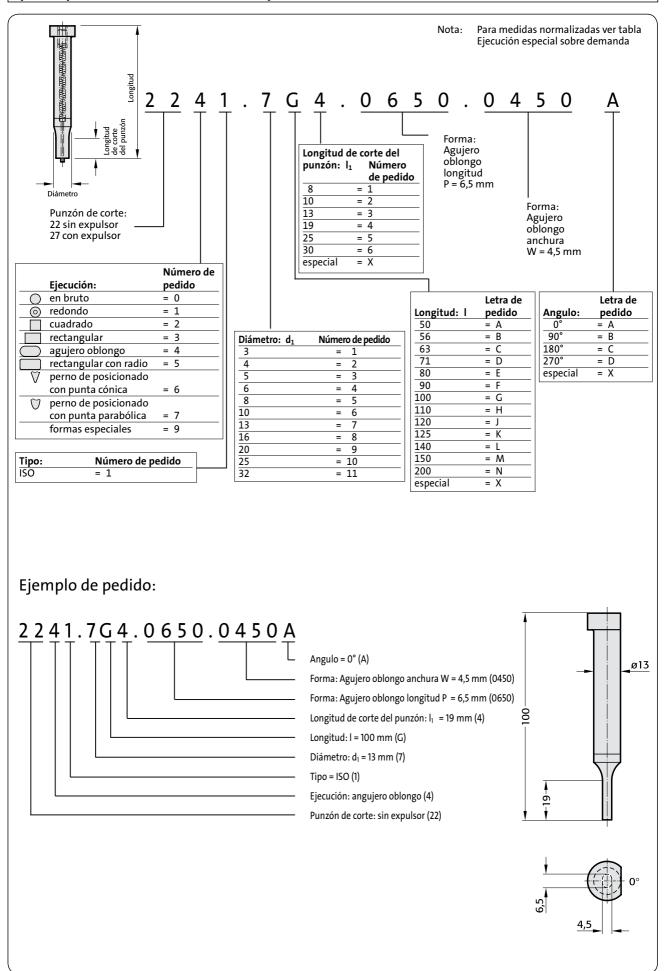
Caña y posicionador en rectificado fino.

P	N	
≤ 10 mr		
10,1 mm - 15 mm	12 mm	
> 15 mr	n 15 mm	
-		

227	73.						I			
d ₂	d ₅	Р	I_1	63	71	80	90	100	110	125
10	10	5,9 - 9,9	19	•	•	•	•	•		
13	12	9,9 – 12,9	19	•	•	•	•	•	•	•
16	12	12,9 – 15,9	25							•
20	12	15,9 – 19,9	25							
25	12	19,9 – 24,9	25							•
32	12	24,9 – 31,9	25		•	•		•		•
40	12	31,9 – 39,9	30							
Otras longitudes sobre demanda.										
Ejemplo de pedido: vea página desplegable E 31.										

FIBRO			

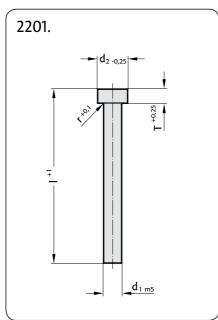
Punzones de corte de precisión ISO


Nos reservamos el derecho de hacer modificaciones

FIBRO

Nos reservamos el derecho de hacer modificaciones

E54


Ejemplos de pedido para punzones de corte de precisión ISO 8020

Punzones de corte de precisión ISO 8020 Punzones de corte de precisión con mecha ISO 8020

2201. 2211.

Material:

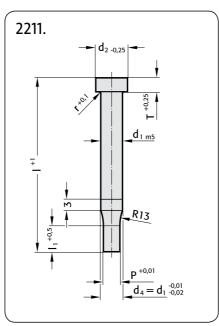
HSS

Dureza: Caña 64±2 HRC 52±5 HRC Cabeza

ASP 23 - ASP 2023

64±2 HRC Caña Dureza: 52±5 HRC Cabeza

Ejemplo de código: 2201.6D.ASP


Diámetro d₁=10 ____ Longitud =71 —

(ver páginas desplegables)

Ejecución:

Cabeza recalcada en caliente, superficies de contacto y de la caña en rectificado fino.

2211

Material:

HSS

Dureza: Caña 64±2 HRC

Cabeza 52±5 HRC

ASP 23 - ASP 2023 sobre demanda.

Ejecución:

Cabeza recalcada en caliente, superficies de contacto, de la caña y del diámetro de corte en rectificado fino.

							- 1			
d_1	d_2	r	Τ	71	80	90	100	120	150	200
3	5	0,25	3	•	•	•	•	•		
4	6		3	•	•	•	•	•		
5	8	0,3	5	•	•	•	•	•		
6	9		5	•	•	•	•	•		
- 8	11		5	•	•	•	•	•		
10	13		5	•	•	•	•	•	•	
13	16	0,4	5	•	•	•	•	•	•	
16	19		5	•	•	•	•	•	•	•

-	3	5	0,25	3	•	•	•	•	•			
-	4	6		3	•	•	•	•	•			_
-	5	8	0,3	5	•	•	•	•	•			
-	6	9		5	•	•	•	•	•			
-	8	11		5	•	•	•	•	•			
-	10	13		5	•	•	•	•	•	•		
-	13	16	0,4	5	•	•	•	•	•	•		_
	16	19		5	•	•	•	•	•	•	•	
-	20	23		5	•	•	•	•	•	•	•	
	25	28		5	•	•	•	•	•	•	•	
ľ	32	35		5	•	•	•	•	•	•	•	
ľ												Π

Ejemplo de pedido:

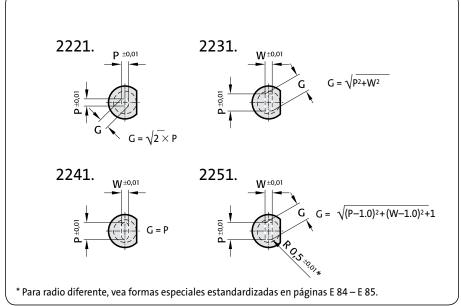
vea página desplegable E 55.

44	11.										
									- 1		
d ₁	d_2	Р	I	1	r	Τ	71	80	90	100	120
3	5	0,8- 2,9	8	10	0,25	3	•	•	•	•	•
4	6	1,0- 3,9	8	13		3	•	•	•	•	•
5	8	1,5- 4,9	13	19	0,3	5	•	•	•	•	•
6	9	1,6- 5,9	13	19		5	•	•	•	•	•
8	11	2,5- 7,9	19	25		5	•	•	•	•	•
10	13	4,0- 9,9	19	25		5	•	•	•	•	•
13	16	5,0-12,9	19	25	0,4	5	•	•	•	•	•
16	19	8,0-15,9	19	25		5	•	•	•	•	•
20	23	12,0-19,9	19	25		5	•	•	•	•	•
25	28	16,5-24,9	19	25		5	•	•	•	•	•

25 30

Ejemplo de pedido:

32 35 20,0-31,9


vea página desplegable E 55.

2201.

2221. 2231.

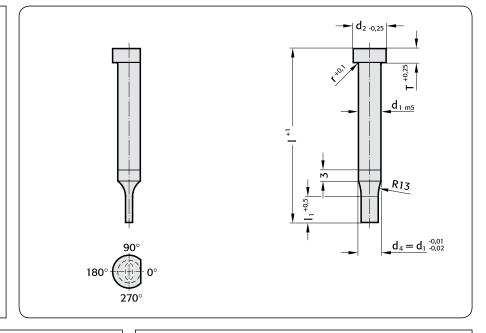
2241. 2251.

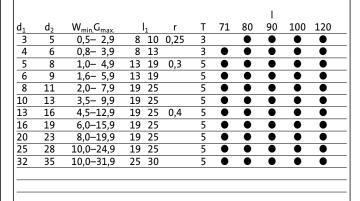
Punzones de corte de precisión con mecha de forma ISO 8020

Material:

HSS

Dureza: Caña

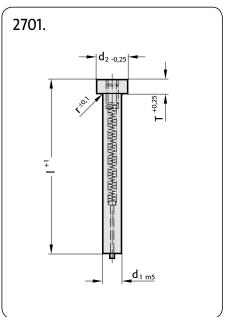

Caña 64±2 HRC Cabeza 52±5 HRC


Ejecución:

Cabeza recalcada en caliente, superficies de contacto, de la caña y de la forma de corte en rectificado fino.

La superficie anti-giro es realizada como Standard paralelamente a la medida P = 0°.

ASP 23 – ASP 2023 sobre demanda

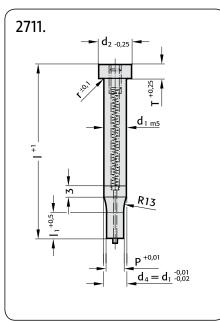


Ejemplo de pedido:

Punzones de corte de precisión con expulsor ISO 8020 Con mecha, con expulsor ISO 8020

2701. (En sustitución de 2671.) **2711.** (En sustitución de 2681.)

Material:


HSS

Dureza: Caña 64±2 HRC Cabeza 52±5 HRC

Ejecución:

Cabeza recalcada en caliente, superficies de contacto y de la caña en rectificado fino.

Material:

HSS

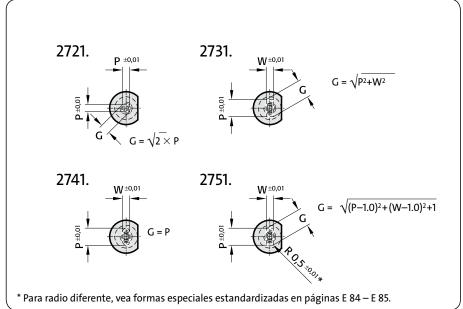
Dureza: Caña 64±2 HRC Cabeza 52±5 HRC

Ejecución:

Cabeza recalcada en caliente, superficies de contacto, de la caña y del diámetro de corte en rectificado fino.

270	2701.										
d_1	d_2	r	Т	71	80	90	100	120			
5	8	0,3	5	•	•	•	•	•			
6	9		5	•	•	•	•	•			
8	11		5	•	•	•	•	•			
10	13		5	•	•	•	•	•			
13	16	0,4	5	•	•	•	•	•			
16	19		5	•	•	•	•	•			
20	23		5	•	•	•	•	•			
25	28		5	•	•	•	•	•			
32	35		5	•	•	•	•	•			

27	2711.											
<u>d₁</u> 5	d ₂	Р	I	1	r	Т	71	80	l 90	100	120	
5	8	1,6- 4,9	13	19	0,3	5	•	•	•	•	•	
6	9	2,5- 5,9	13	19		5	•	•	•	•	•	
8	11	2,5- 7,9	19	25		5	•	•	•	•	•	
10	13	4,0- 9,9	19	25		5	•	•	•	•	•	
13	16	5,0-12,9	19	25	0,4	5	•	•	•	•	•	
16	19	8,0-15,9	19	25		5	•	•	•	•	•	
20	23	12,0-19,9	19	25		5	•	•	•	•	•	
25	28	16,5-24,9	19	25		5	•	•	•	•	•	
32	35	20,0-31,9	25	30		5	•	•	•	•	•	


Ejemplo de pedido:

vea página desplegable E 55.

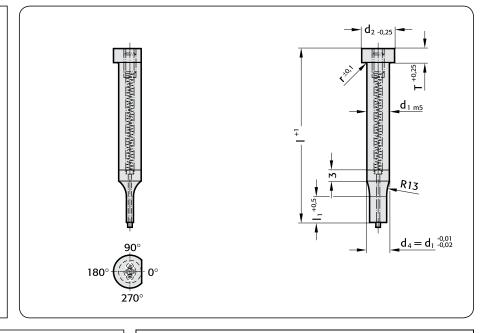
Ejemplo de pedido:

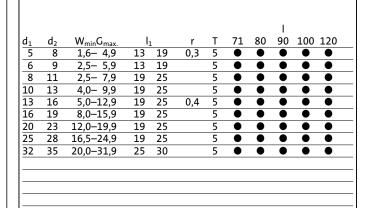
2721. 2731. 2741. 2751. (En sustitución de 2681.)

Punzones de corte de precisión con mecha de forma y expulsor ISO 8020

Material:

HSS


Dureza:

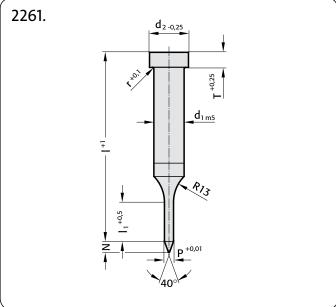

Caña 64±2 HRC Cabeza 52±5 HRC

Ejecución:

Cabeza recalcada en caliente, superficies de contacto, de la caña y de la forma de corte en rectificado fino.

La superficie anti-giro es realizada como Standard paralelamente a la medida P = 0°.

Ejemplo de pedido:


vea página desplegable E 55.

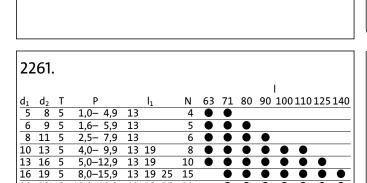
E59

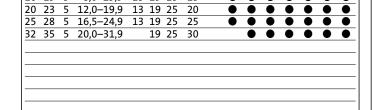
Perno de posicionado con punta cónica ISO 8020

2261.

Material:

HSS

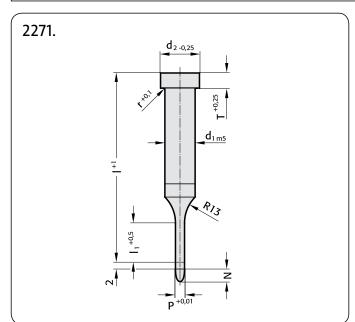

Dureza:


64±2 HRC Cabeza 52±5 HRC

Ejecución:

Cabeza recalcada en caliente, superficies de contacto, de la caña y del posicionador en rectificado fino.

Caña



15

Ejemplo de pedido:

2271.

Perno de posicionado con punta parabólica ISO 8020

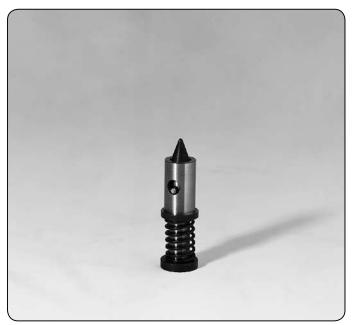
Material:

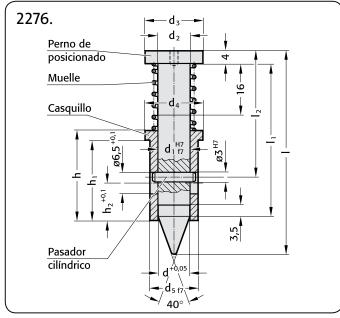
HSS

Dureza: Caña 64±2 HRC Cabeza 52±5 HRC

Ejecución:

Cabeza recalcada en caliente, superficies de contacto, de la caña y del posicionador en rectificado fino.


«I» longitud del posicionador es sin punta.


Nota: La longitud de 2 mm efectúa un guiado total antes de que el punzón de corte toque la chapa.

Р	N		
≤ 10 mm	8 mm		
10,1 mm - 15 mm	12 mm		
> 15 mm	15 mm		

<u>d₁</u> 5	d ₂ 8	<u>T</u>	P 10 10	10	11		50	56	63	71	80	90	100
		5	1,0- 4,9	10	13		Ť	÷	<u> </u>	÷			
6	9	5	1,6- 5,9	10	13		•	•	•	•	•		
8	11	5	2,5- 7,9	10	13		•	•					
10	13	5	4,0- 9,9	10	13	19							
13	16	5	5,0-12,9	10	13	19							
16	19	5	8,0-15,9		13	19	•	•	•	•	•	•	•
20	23	5	12,0-19,9		13	19		•	•	•	•	•	•
25	28	5	16,5-24,9		13	19		•	•	•	•	•	•
32	35	5	20,0-31,9			19				•	•	•	•

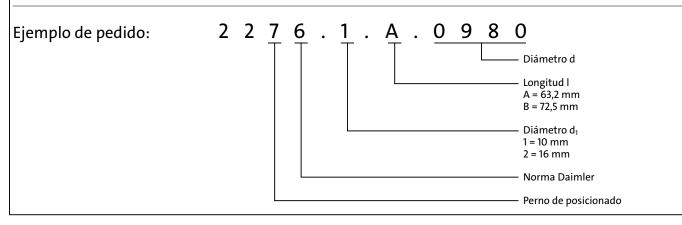
Ejemplo de pedido:

Descripción:

La unidad de posicionado se emplea para posicionar exactamente la chapa.

Se fabrican dos tamaños:

La unidad de posicionado 10 es apta para diámetros de agujero de 5 a 10 mm y debe pedirse como unidad completa con d = 9,8 mm. Diámetros inferiores tienen que ser rectificados por el usuario.

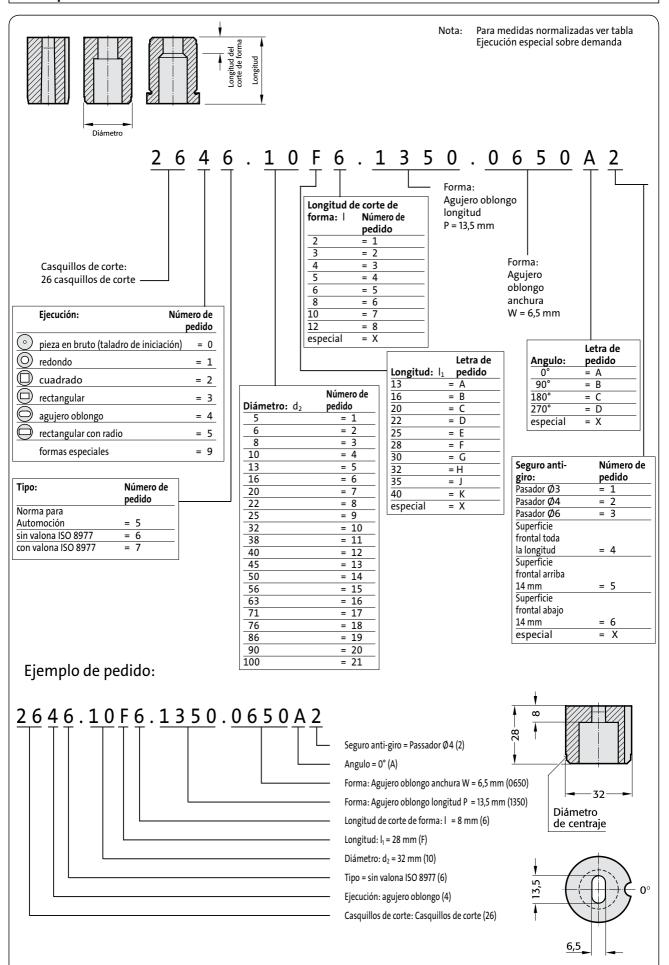

La unidad 16 se emplea para diámetros > 10 hasta max. 16 mm y debe pedirse como pieza en bruto d = 15,8 mm.

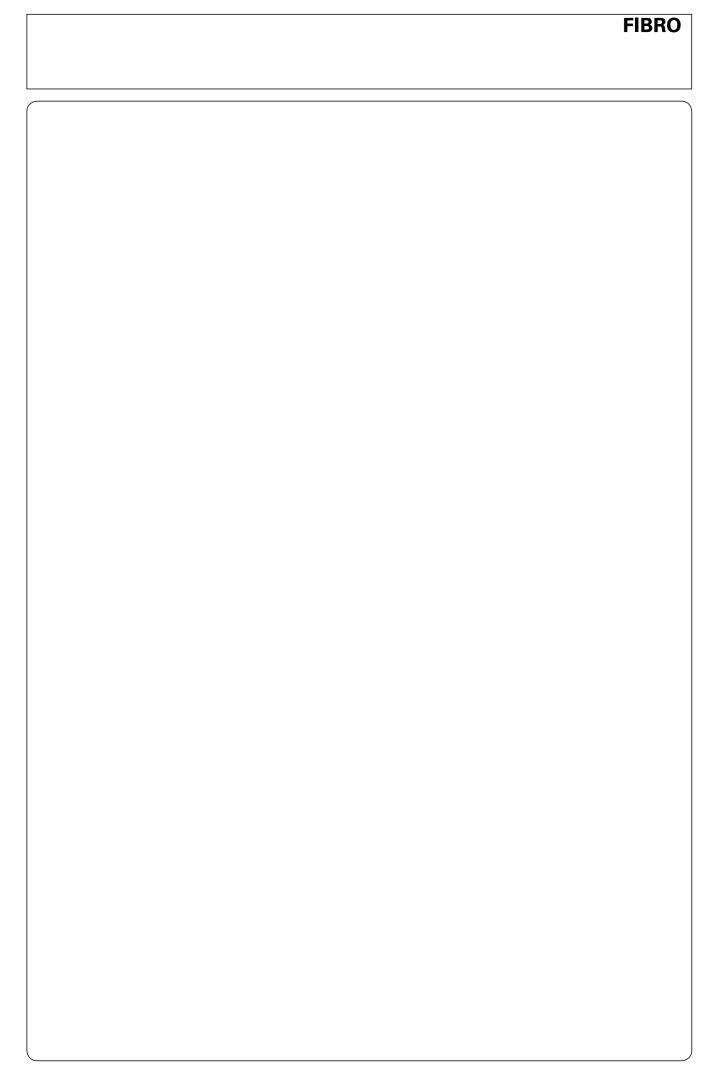
Nota:

La unidad de posicionado consiste en: Perno de posicionado, casquillo, muelle, pasador cilíndrico

2276.

													ruerza dei mu	ene en dan	
Código	d	d_1	d_2	d₃	d_4	d_5	h	h_1	h_2	I_1	I_2	- 1	pre-tensado	apretado	
2276.1.	9,8	10	10	18	18	15	28	25	12	47,5	39,3	63,2	4,9	6,2	
2.	15,8	16	16	24	30	26	28	25	12	54,5	46,3	72,5	4,8	5,6	


Casquillos de corte de precisión

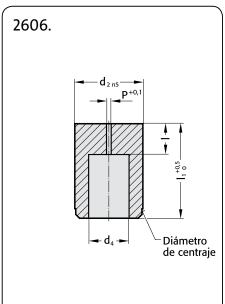

Nos reservamos el derecho de hacer modificaciones

FIBRO

Nos reservamos el derecho de hacer modificaciones

Ejemplos de pedido casquillos de corte

2606. 2616. (En sustitución de 2603.) Casquillos de corte de precisión sin valona, cilíndricos ISO 8977

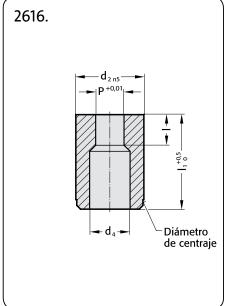

Material:

HSS templado 62 ± 2 HRC

Ejecución:

Diámetros d₂, y de centraje, así como superficies frontales, rectificados.

El diámetro P es un oroficio de iniciación para electro-erosión por hilo.



Material:

templado 62 ± 2 HRC

Ejecución:

Diámetros d₂ y de centraje, así como superficies frontales, rectificados.

260	06.							I ₁					
d ₂	d_4	Р		I	16	20	22	25	28	30	32	35	40
5	2,8	0,8	2										
6	3,5	1,0	3		•	•	•	•	•	•	•	•	
8	4,0	1,0	4										
10	5,8	1,0	4	8	•	•	•	•	•	•	•	•	
13	8,0	1,2	5	8		•	•	•	•	•	•	•	
16	9,5	1,2	5	8		•							
20	12,0	1,5	8	12		•	•	•	•	•	•	•	
22	15,0	1,5	8	12		•	•	•	•	•	•	•	
25	17,3	1,5	8	12		•	•	•	•	•	•	•	
32	20,7	1,5	8	12		•	•	•	•	•	•	•	
40	27,7	1,5	8	12				•	•	•	•	•	
50	37,0	1,5	8	12				•	•	•	•	•	•

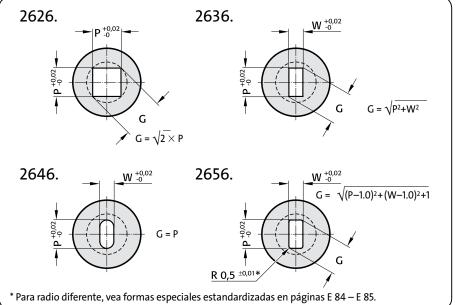
Otras longitudes sobre demanda.

Ejemplo de pedido:

vea página desplegable E 65.

261	6.									l ₁			
d_2	d_4	Р		I	16	20	22	25	28	30	32	35	40
5	2,8	1,0- 2,4	2		•				•				
6	3,5	1,6- 3,0	3		•	•	•	•	•	•	•	•	
8	4,0	2,0- 3,5	4		•	•	•	•	•	•	•	•	
10	5,8	2,5- 5,0	4	8	•	•	•	•	•	•	•	•	
13	8,0	4,0- 7,0	5	8		•	•	•	•	•	•	•	
16	9,5	6,0- 9,0	5	8		•	•	•	•	•	•	•	
20	12,0	8,0-11,0	8	12		•	•	•	•	•	•	•	
22	15,0	9,0-14,0	8	12		•	•	•	•	•	•	•	-
25	17,3	10,7-16,0	8	12		•	•	•	•	•	•	•	
32	20,7	15,0-20,0	8	12		•	•	•	•	•	•	•	
40	27,7	19,0-27,0	8	12				•	•	•	•	•	
50	37,0	26,0-36,0	8	12				•	•	•	•	•	•

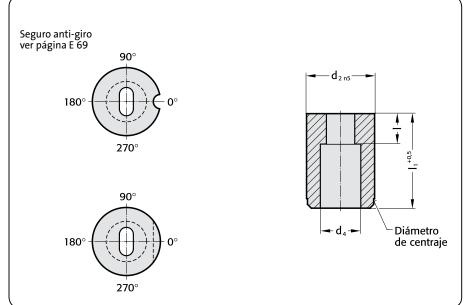
Ejemplo de pedido:


Casquillos de corte de precisión sin valona, cilíndricos ISO 8977

FIBRO

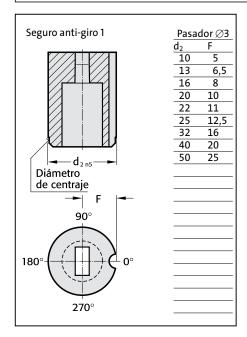
2626. 2636.

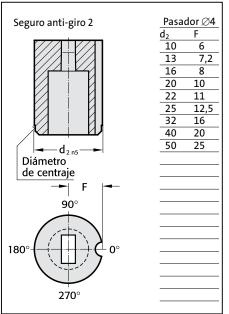
2646. 2656.

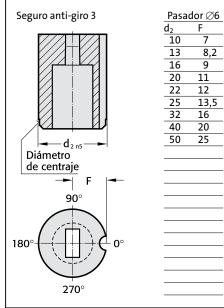

Material:

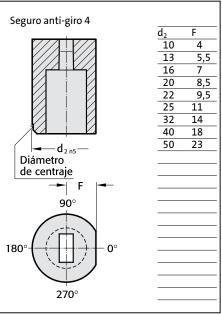
HSS

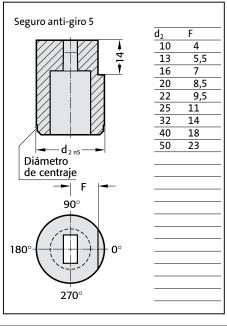
templado: 62 ±2 HRC

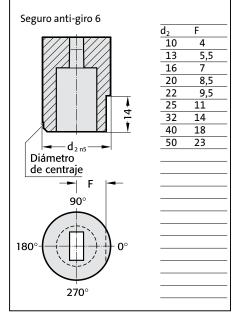

Ejecución:

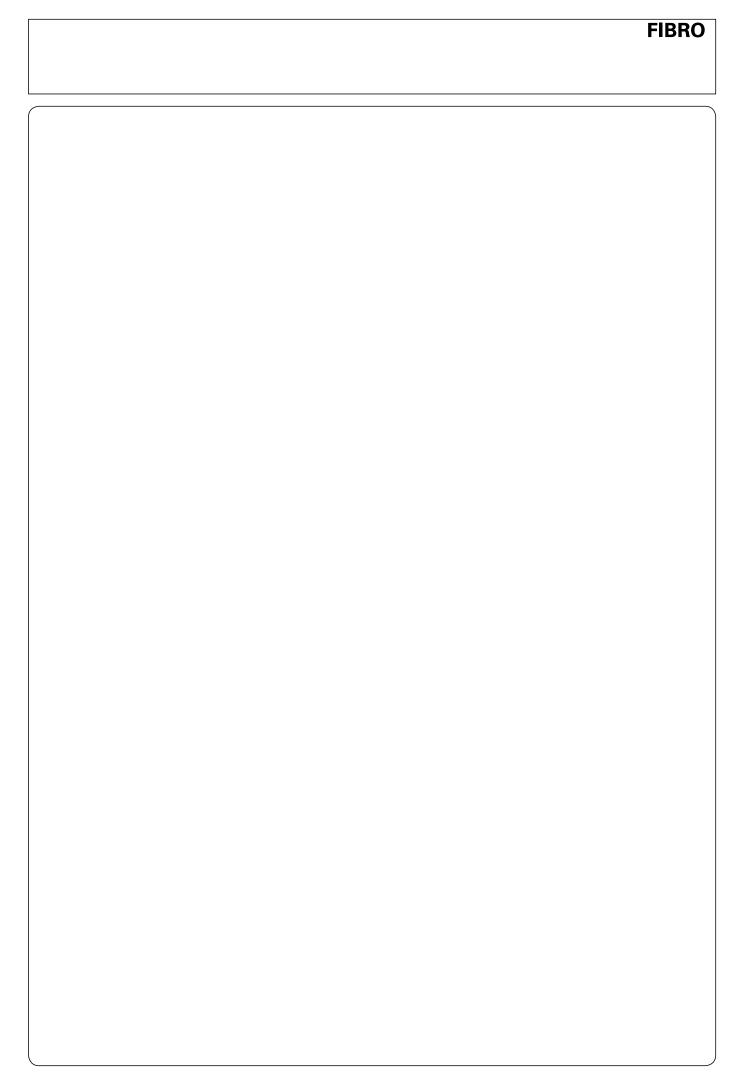

Diámetros d2 y de centraje, así como superficies frontales, rectificados.




										l ₁				
d ₂	d₄	W _{min.}	$G_{\text{max.}}$		ı	16	20	22	25	28	30	32	35	40
10	5,8	1,2	5,0	4	8	•	•	•	•	•	•	•	•	
13	8,0	2,0	7,0	5	8		•	•	•	•	•	•	•	
16	9,5	2,4	9,0	5	8		•	•	•	•	•	•	•	
20	12,0	3,2	11,0	8	12		•	•	•	•	•	•	•	
22	15,0	4,0	14,0	8	12		•	•	•	•	•	•	•	
25	17,3	4,8	16,0	8	12			•		•				
32	20,7	5,5	20,0	8	12		•	•	•	•	•	•	•	
40	27,7	6,4	27,0	8	12									
50	37,0	9,0	36,0	8	12				•	•	•	•	•	•
Otras	longit	udes so	obre dei	mar	ıda.									
-	-		pedi gable E											


Casquillos de corte de precisión sin valona, cilíndricos, ISO 8977 Seguro anti-giro

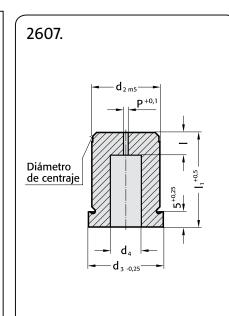




Ejemplo de pedido:

2607. 2617. (En sustitución de 2613.) Casquillos de corte de precisión con valona, cilíndricos ISO 8977

Material:

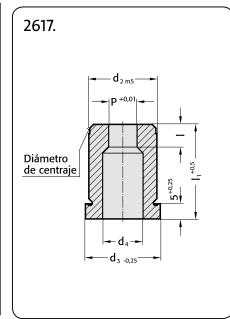

HSS templado: 62 ±2 HRC

Ejecución:

Diámetros d₂ y superficies frontales

rectificados.

El diámetro P es un oroficio de iniciación para electro-erosión por hilo.



Material:

62 ± 2 HRC templado:

Ejecución:

Diámetro d₂ y superficies frontales rectificados.

26	07.								Į.	1				
d ₂	d₃	d_4	Р		I	16	20	22	25	28	30	32	35	
5	8	2,8	0,8	2										
6	9	3,5	1,0	3		•	•	•	•	•	•	•	•	
8	11	4,0	1,0	4		•	•	•	•	•	•	•	•	•
10	13	5,8	1,0	4	8	•	•	•	•	•	•	•	•	
13	16	8,0	1,2	5	8		•	•	•	•	•	•	•	•
16	19	9,5	1,2	5	8									
20	23	12,0	1,5	8	12		•	•	•	•	•	•	•	
22	25	15,0	1,5	8	12		•	•	•	•	•	•	•	•
25	28	17,3	1,5	8	12		•	•	•	•	•	•	•	•
32	35	20,7	1,5	8	12		•	•	•	•	•	•	•	•
40	43	27,7	1,5	8	12		•	•	•	•	•	•	•	•
50	53	37.0	1 5	Q	12		_	_	_	_	_	_	_	•

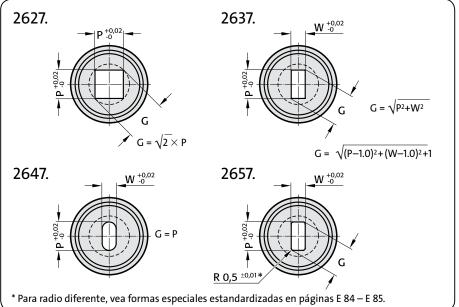
Otras longitudes sobre demanda.

Ejemplo de pedido:

vea página desplegable E 65.

26	17.								I ₁				
<u>d</u> ₂ 5	d₃	d_4	Р		I	16	20	22	25	28	30	32	35
5	8	2,8	1,0- 2,4	2		•	•	•	•	•	•	•	•
6	9	3,5	1,6- 3,0	3		•	•	•	•	•	•	•	•
8	11	4,0	2,0- 3,5	4		•	•	•	•	•	•	•	•
10	13	5,8	2,5- 5,0	4	8	•	•	•	•	•	•	•	•
13	16	8,0	4,0- 7,0	5	8		•	•	•	•	•	•	•
16	19	9,5	6,0- 9,0	5	8								
20	23	12,0	8,0-11,0	8	12		•	•	•	•	•	•	•
22	25	15,0	9,0-14,0	8	12		•	•	•	•	•	•	•
25	28	17,3	10,7-16,0	8	12		•	•	•	•	•	•	•
32	35	20,7	15,0-20,0	8	12		•	•	•	•	•	•	•
40	43	27,7	19,0-27,0	8	12		•	•	•	•	•	•	•
50	53	37,0	26,0-36,0	8	12		•	•	•	•	•	•	•

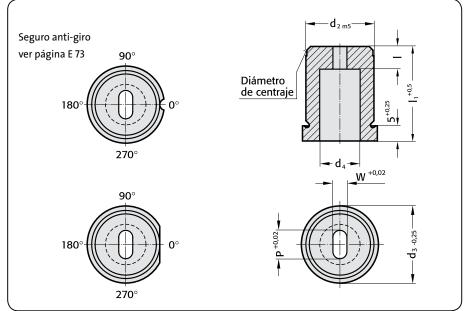
Otras longitudes sobre demanda.


Ejemplo de pedido:

Casquillos de corte de precisión con valona cilíndricos ISO 8977

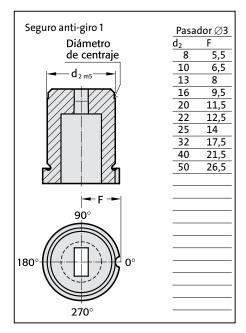
2627. 2637.

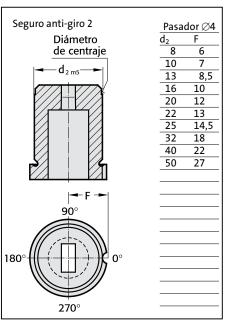
2647. 2657.

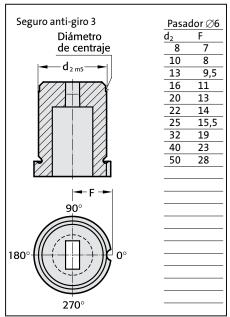

Material:

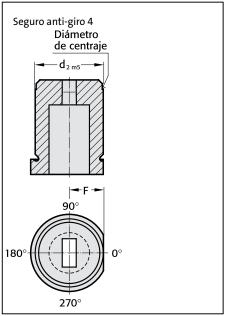
HSS

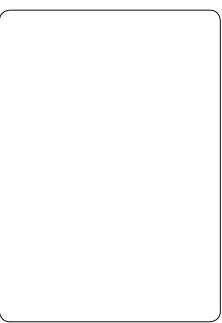
templado: 62 ± 2 HRC

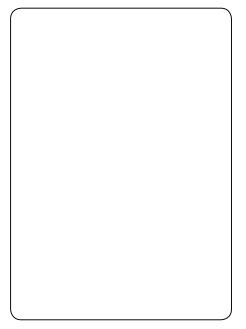

Ejecución:

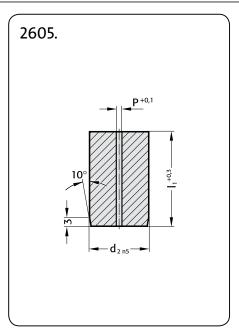

Diámetros d_2 y superficies frontales rectificados.




d_2	d ₃	d₄	$W_{min.}$	G _{max.}		1	16	20	22	25	28	30	32	35
8	11	4,0	1,2	3,5	4		•	•	•	•	•	•	•	•
10	13	5,8	1,2	5,0	4	8	•	•		•		•	•	•
13	16	8,0	2,0	7,0	5	8		•	•	•	•	•	•	•
16	19	9,5	2,4	9,0	5	8		•	•	•	•	•	•	•
20	23	12,0	3,2	11,0	8	12								
22	25	15,0	4,0	14,0	8	12								
25	28	17,3	4,8	16,0	8	12		•	•	•		•		•
32	35	20,7	5,5	20,0	8	12		•	•	•	•	•	•	•
40	43	27,7	6,4	27,0	8	12								
50	53	37,0	6,4	36,0	8	12		•	•	•	•	•	•	•
Otra	as lor	ngitud	es sobre	deman	da.									


Casquillos de corte de precisión con valona, cilíndricos, ISO 8977 Seguro anti-giro

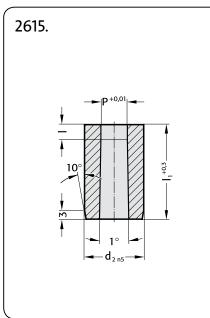




Casquillos de corte sin valona Norma Automoción

2605. 2615.

Material:


HSS templado 62±2 HRC

Ejecución:

Diámetros d_2 , y superficies frontales rectificados.

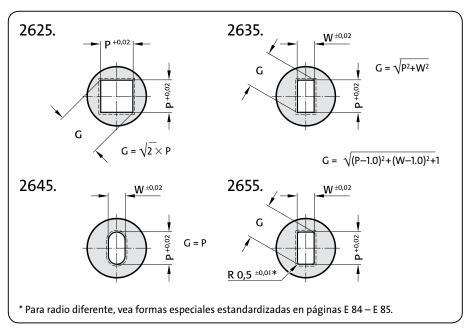
El diámetro P es un oroficio de iniciación para electro-erosión por hilo.

Material:

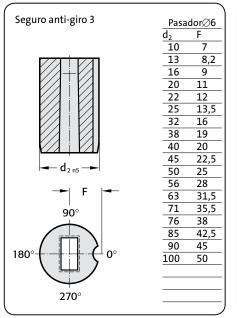
HSS templado 62±2 HRC

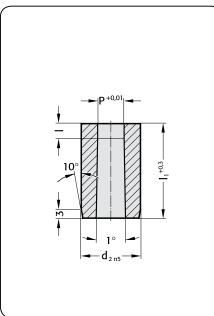
Ejecución:

Diámetros d₂, y superficies frontales rectificados.


260	5.					I ₁					
d ₂	Р	13	16	20	22	25	28	30	32	35	40
10	0,8	•	•	•	•	•	•	•	•	•	
13	0,8	•	•	•	•	•	•	•	•	•	
16	1,5			•	•	•	•	•	•	•	
20	2,4			•	•	•	•	•	•	•	
22	3,0			•	•	•	•	•	•	•	
25	3,0			•	•	•	•	•	•	•	
32	3,0			•	•	•	•	•	•	•	
38	3,0			•	•	•	•	•	•	•	•
40	3,0				•	•	•	•	•	•	•
45	3,0				•	•	•	•	•	•	•
50	3,0				•	•	•	•	•	•	•
56	3,0				•	•	•	•	•	•	•
63	3,0				•	•	•	•	•	•	•
71	3,0				•	•	•	•	•	•	•
76	3,0					•	•	•	•	•	•
86	3,0					•	•	•	•	•	•
90	3,0					•	•	•	•	•	•
100	3,0					•	•	•	•	•	•
Otras	Otras longitudes sobre demanda.										

Ejemplo de pedido: vea página desplegable E 65.


261	5.									l ₁				
d ₂	Р		-		13	16	20	22	25	28	30	32	35	40
10	1,6 - 6,8	3	4	5	•	•				•	•	•	•	
13	3,0 - 8,8	3	5	8										
16	7,4 -10,8	3	5	8										
20	9,5 -13,6	3	5	10										
22	10,5 -15,0	3	6	10										
25	12,0 -17,0	3	6	10							•			
32	16,0 -22,0	3	6	12			•	•	•	•	•	•	•	
38	18,0 -27,0	3	8	12			•	•	•	•	•	•	•	•
40	18,0 -27,0	3	8	12				•	•	•	•	•	•	lacksquare
45	18,0 -35,0	3	8	12				•	•	•	•	•	•	•
50	18,0 -40,0	3	8	12				•	•	•	•	•	•	•
56	18,0 -45,0	3	8	12				•	•	•	•	•	•	•
63	18,0 -50,0	3	8	12				•	•	•	•	•	•	•
71	18,0 -56,0	3	8	12				•	•	•	•	•	•	•
76	25,0 -60,0	3	8	12					•	•	•	•	•	•
86	25,0 -66,0	3	8	12										•
90	32,0 -70,0	3	8	12					•	•	•	•	•	•
100	32,0 -78,0	3	8	12					•	•	•	•	•	•
Otras longitudes sobre demanda.														
Ejemplo de pedido: vea página desplegable E 65.														


2625. 2635. 2645. 2655.

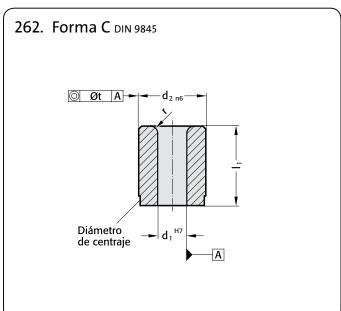
Casquillos de corte sin valona Norma Automoción

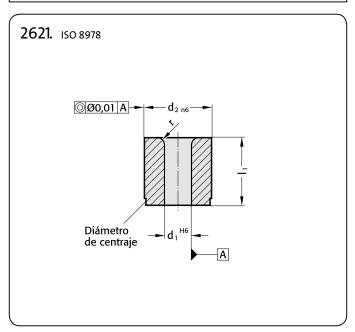
	Material:
	templado 62±2 HRC
-	Ejecución:
	Diámetros d ₂ , y superficies frontales rectificados.
1 +03	
-	

										I_1					
d ₂	W _{min.} (G _{max.}		ı		13	16	20	22	25	28	30	32	35	40
10	1,3 -	6,8	3	4	5	•	•	•		•		•	•	•	
13	1,9 –	8,8	3	5	8	•	•	•	•	•	•	•	•	•	
16	1,9 –	10,8	3	5	8										
20	1,9 –	13,6	3	5	10										
22	1,9 -	15,0	3	6	10										
25	1,9 –	17,0	3	6	10										
32	1,9 -	22,0	3	6	12										
38	1,9 –	27,0	3	8	12										
40	1,9 –	27,0	3	8	12				•	•	•	•	•	•	lacksquare
45	2,4-	35,0	3	8	12										
50	4,0 -	40,0	3	8	12										
56	4,0 -	45,0	3	8	12				•	•	•	•	•	•	lacksquare
63	4,0 -	50,0	3	8	12										
71	4,0 -	56,0	3	8	12				•	•	•	•	•	•	lacksquare
76	5,6 –	60,0	3	8	12					•	•	•	•	•	•
86	5,6 –	66,0	3	8	12					•	•	•	•	•	•
90	5,6 -	70,0	3	8	12					•	•	•	•	•	•
100	5,6 -		3	8	12					•			•	•	•
Otras	Otras longitudes sobre demanda.														

Material:

Acero de cementación. Cementado Código de pedido: 262.1. 262.1. 740 ± 40 HV 10 Dureza


2621.


WS, templado Código de pedido: Dureza 2621.1. HRC 60 ± 2

Ejecución:

Diámetros d1,d2 y de centraje, rectificados.

Caractéristicas de los materiales: ver páginas E 10 – E 11.

262.					
	Escalona-				
d_1	miento	d_2	t	I_1	r
0,5- 1,0	0,1	5	0,01	9	1
1,1- 2,0		6		12	
2,1- 3,0		7			
3,1- 4,0		8			
4,1- 5,0		10		16	
5,1- 6,0		12	0,02		1,5
6,1- 8,0		15		20	
8,1-10,0		18			2
10,1-12,0		22		28	
12,1-15,0		26			
15,1-18,0	0,5	30		36	

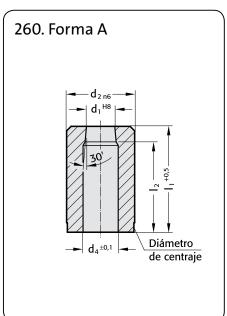
Otros diámetros sobre demanda.			
Ejemplo de pedido:			
Casquillo guía-punzones DIN 9845	= 262	<u>.</u>	
Material acero de cementación	=	1.	
$d_1 = \emptyset \ 2,4 \ mm$	=	0240.	
l ₁ = 12 mm	=	012	2
Código	= 262	.1.0240.012	2

2621.				
	Escalona-			
d ₁	miento	d_2	l ₁	r
1,0 - 2,4	0,1	5	8	1
1,6- 3,0		6	12,5	1
2,0 - 3,5		8	12,5	1,5
3,0 - 5,0		10	16	2
4,0 - 7,2		13	16	2
6,0 - 8,8		16	20	2
7,5-11,3		20	20	2,5
11,0-16,6		25	25	2,5
15,0-20,0	0,5	32	25	4
18,0-27,0		40	32	4
26,0-36,0		50	40	4

Ejemplo de pedido:	
Casquillo guía-punzones ISO 8978	= 2621.
Material WS	= 1.
$d_1 = \emptyset 2,0 \text{ mm}$	= 0200.
$d_2 = \emptyset 6 \text{ mm}$	= 0600
Código	= 2621.1.0200.0600

260.

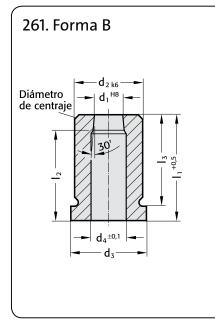
261.


Casquillos de corte de precisión con y sin valona DIN 9845 formas A + B

Material:

HSS

Forma A = 260.3. Forma B = 261.3. Código: 62 ± 2 HRC Dureza:


Para descripciones y otros materiales, véanse páginas E10–E11.

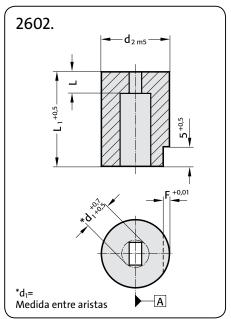
Ejecución:

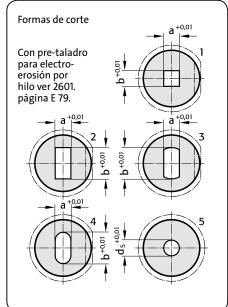
Diámetros d₁, d₂ y las superficies frontales en rectificado fino.

1	-	\sim	
,	h	()	

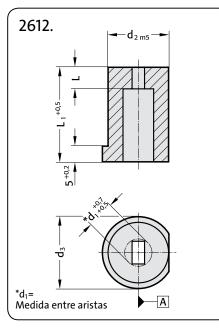
	Escalona-			COI	to	lar	go
d_1	miento	d_2	d_4	I_1	I_2	I_1	_ l ₂
0,5- 1,0	0,1	5	d ₁ +0,3	20	18	_	_
1,1- 2,0		6			17	28	25
2,1- 3,0		7	d ₁ +0,5				
3,1- 4,0		8					
4,1 -5,0		10	d ₁ +0,7		16		24
5,1- 6,0		12					
6,1- 8,0		15					
8,1-10,0		18	d_1^{+1}				
10,1-12,0		22			15		23
12,1-15,0		26					
15,1-18,0		30		_	-		

tros diàmetros	sohre	demanda


261.


	Escalona-			corto	largo
d_1	miento d ₂	d_3	d_4	l_1 l_2 l_3	l_1 l_2 l_3
0,5- 1,0	0,1 5	7	d ₁ +0,3	20 18 16	
1,1- 2,0	6	8		17	28 25 24
2,1- 3,0	7	9	d ₁ +0,5		
3,1- 4,0	8	10			
4,1 -5,0	10	12	d ₁ +0,7	16	24
5,1- 6,0	12	14			
6,1- 8,0	15	17			
8,1–10,0	18	20	d ₁ +1		
10,1-12,0	22	24		15	23
12,1-15,0	26	28		-	
15,1–18,0	30	32			

Ejemplo de pedido:


Casquillos de corte = 261. Material HSS $d_1 = \emptyset 2,20 \text{ mm}$ $\overline{l_1} = 28 \text{ mm}$ 028 Código = 261.3.0220.028

Material:

HSS Código: 2602. o 2612.3. Dureza: 64±2 HRC

Ejecución:

Diámetro d_2 así como superficies frontales, recitficados.

Salvo indicación en contra, la superficie plana es paralela a A.

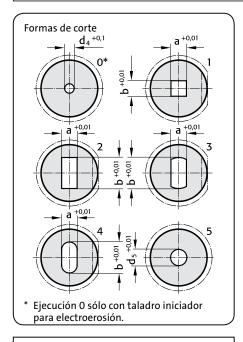
2602.										
Medida entre	aristas	5					L ₁			
d_1 , d_5	d_2	L	F	16	19	22	25	28	32	
1,8 - 3,2	8	3	1,0	•	•	•	•	•	•	_
2,0 - 5,0	10			•	•	•	•	•	•	_
3,0 - 7,0	13		1,5	•	•	•	•	•	•	_
5,0 - 8,0	16	5		•	•	•	•	•	•	_
7,0 – 11,0	20			•	•	•	•	•	•	_
11.0 – 16.0	25		2.5							_

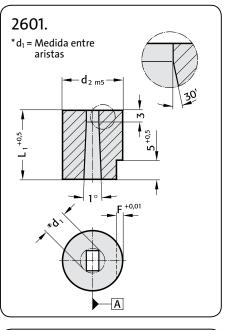
Ejemplo de pedido:

32

16,0 - 19,0 19,0 - 28,0

c	2602	
Casquillo de corte	= 2602.	
Material HSS	= 3	3.
$d_2 = 16 \text{ mm}$	=	016.
$L_1 = 32 \text{ mm}$	=	032.
Forma 2	=	2.
a = 3,96 mm	=	0396.
b = 5,16 mm	=	0516
Código	= 2602.3	3.016.032.2.0396.0516


2612.

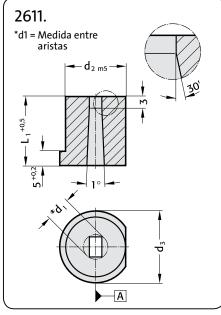

Medida entre	arista	s					L_1		
d ₁ , d ₅	d_2	d₃	L	16	19	22	25	28	32
1,8 - 3,2	8	11	3	•	•	•	•	•	•
2,0 - 5,0	10	13		•	•	•	•	•	•
3,0 - 7,0	13	16		•	•	•	•	•	•
5,0 - 8,0	16	19	5	•	•	•	•	•	•
7,0 – 11,0	20	23		•	•	•	•	•	•
11,0 – 16,0	25	28		•	•	•	•	•	•
16,0 – 19,0	32	35	7	•	•	•	•	•	•
19,0 - 28,0	40	43		•	•	•	•	•	•

Casquillo de corte	= 26	12.			
Material HSS	=	3.			
d ₂ = 16 mm	=	016.			
L ₁ = 28 mm	=	02	28.		
Forma 2	=		2.		
a = 3,96 mm	=		0396.		
b = 5,16 mm	=		0.	516	
Código	= 26	12.3.016.02	8.2.0396.0	516	

2601. 2611.

Casquillos de corte de precisión con y sin valona cónicos

Material:


HSS

Código: 2601. o 2611.3. Dureza: 64 ± 2 HRC

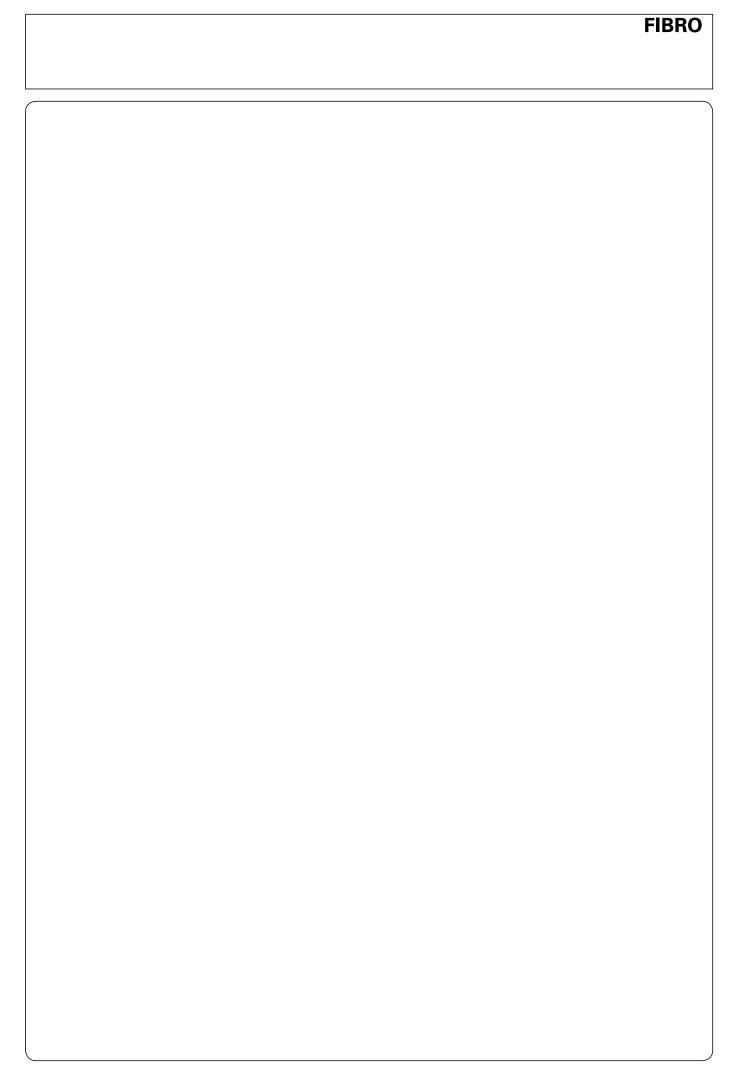
Ejecución:

Diámetro d₂ así como superficies frontales, rectificados.

Salvo indicación en contra, la superficie plana es paralela a la medida A.

2601.

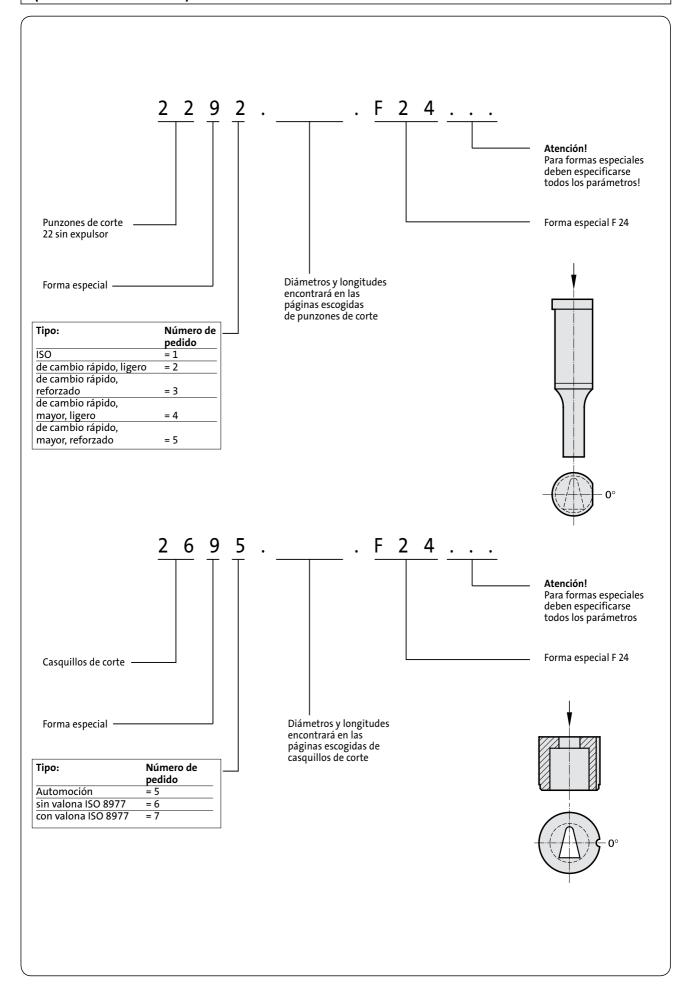
Medida entre	e arista	S					L_1		
d ₁ , d ₅	d_2	d_4	F	16	19	22	25	28	32
1,8- 3,2	8	1,0	1,0	•	•	•	•	•	•
2,0- 5,0	10			•	•	•	•	•	•
3,0- 7,0	13	1,5	1,5	•	•	•	•	•	•
5,0- 8,0	16			•	•	•	•	•	•
7,0-11,0	20			•	•	•	•	•	•
11,0-16,0	25	2,5	2,5	•	•	•	•	•	•
16,0-19,0	32			•	•	•	•	•	•
19,0-28,0	40			•	•	•	•	•	•


Ejemplo de pedido:

, , ,					
Casquillo de corte	= 260	1.			
Material HSS	=	3.			
d ₂ = 16 mm	=	016.			
L ₁ = 32 mm	=	0	32.		
Forma 2	=		2.		
a = 3,96 mm	=		0396.		
b = 5,16 mm	=		05	16	
Código	= 260	1.3.016.0	32.2.0396.05	16	

2611.

Medida entre	arista	s				L	-1		
d ₁ , d ₅	d_2	d₃	d_4	16	19	22	25	28	32
1,8- 3,2	8	11	1,0	•	•	•	•	•	•
2,0- 5,0	10	13		•	•	•	•	•	•
3,0- 7,0	13	16	1,5	•	•	•	•	•	•
5,0- 8,0	16	19		•	•	•	•	•	•
7,0-11,0	20	23		•	•	•	•	•	•
11,0-16,0	25	28	2,5	•	•	•	•	•	•
16,0-19,0	32	35		•	•	•	•	•	•
19,0-28,0	40	43		•	•	•	•	•	•

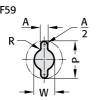

Casquillo de corte	= 261	1.
Material HSS	=	3.
$d_2 = 16 \text{ mm}$	=	016.
$L_1 = 32 \text{ mm}$	=	032.
Forma 2	=	2.
a = 3,96 mm	=	0396.
b = 5,16 mm	=	0516
Código	= 261	1.3.016.032.2.0396.0516


FIBRO	
	Formas especiales estandardizadas

FIBRO

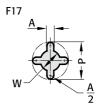
Ejemplos de código Formas especiales de punzones y casquillos de corte (estandardizadas)

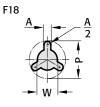
Formas especiales estandardizadas

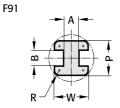


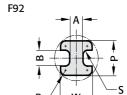
Forma especiales estandardizadas

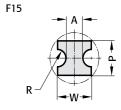
90°

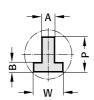

Formas múltiples de bocallave

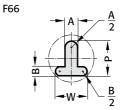


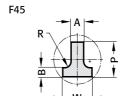


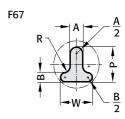



Formas de doble T

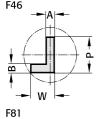


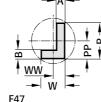


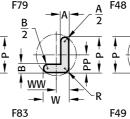


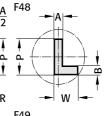

Formas sencillas de T

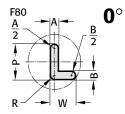
F44

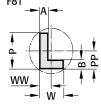


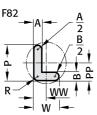


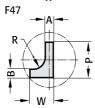

Formas en L

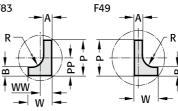

180° F46

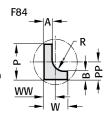


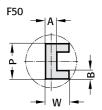


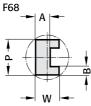


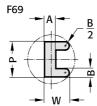


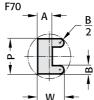


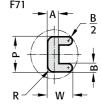


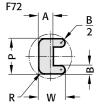


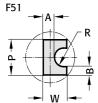


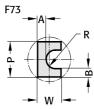


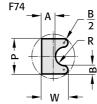


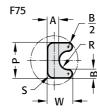

Formas en U

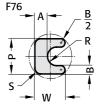


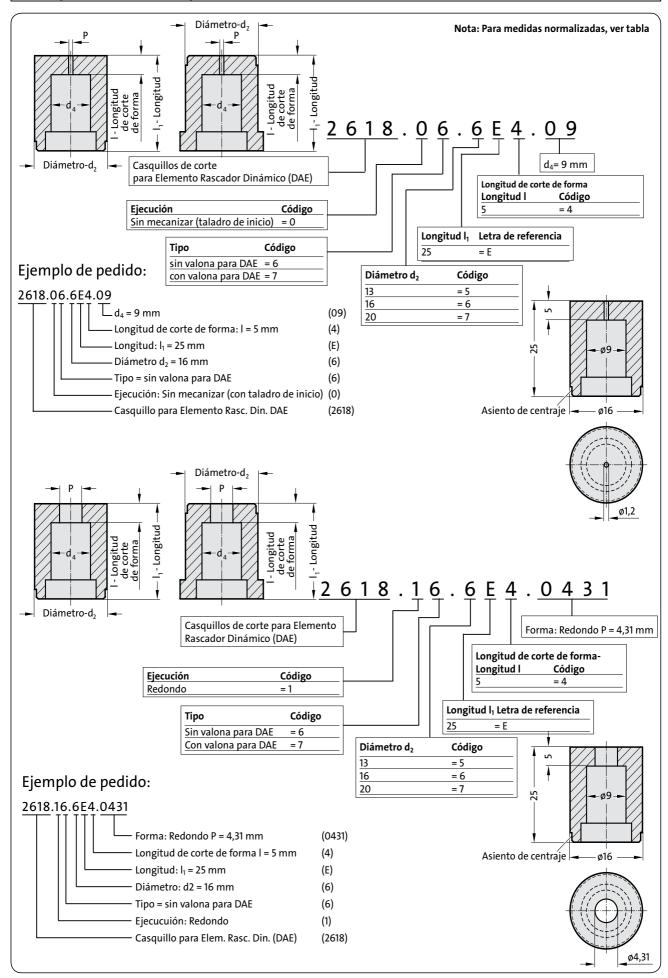




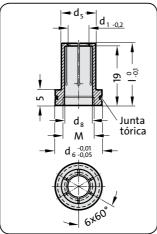


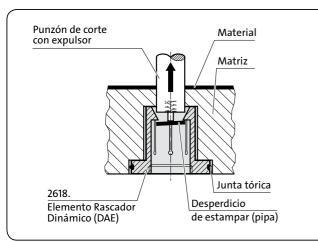


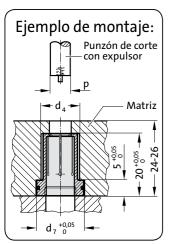




FIBRO


Ejemplo de pedido Casquillos de corte para Elemento Rascador Dinámico (DAE)




Elementos Rascador Dinámico (DAE)


2618.

Material: Acero, templado

Descripción:

El elemento Rascador Dinámico (DAE) se emplea en útiles para la estampación y corte de piezas de chapa hasta un espesor de 2 mm. El DAE está situado debajo de la matriz.

Su geometría es comparáble a un manguito expansible (similar a una pinza).

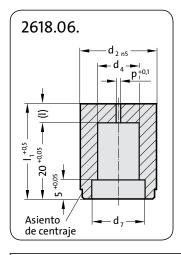
Después de la propia operación de estampar, el punzón entra en el DAE

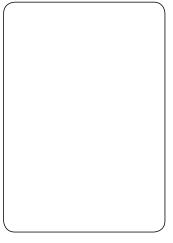
con los desperdicios de estampar (pipa) adheridos. Entonces se expande el DAE y se ajusta al punzón de corte. En la carrera de retroceso, el DAE limpia el punzón de los desperdicios de

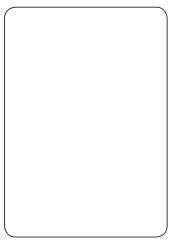
estampar (pipa). El diámetro del rescador d_1 debe ser 0.2 mm inferior al del punzón de corte "P". Para garantizar la eficacia de un rascador, la profundidad

mínima de penetración en el DAE tiene que ser de 1 mm. El DAE protege de daños al útil y al producto, y aumenta la producción.

2618.							
Punzón de corte "P"	DAE "d ₁ "					Matriz	
Incrementos 0.01		d ₅	d6	1	Μ	d4	d7
3.00 - 3.09	3.0	7	11	19.95	M6	8	11
3.10 - 3.19	3.1						
3.20 - 3.29	3.2						
3.30 - 3.39	3.3						
3.40 - 3.49	3.4						
3.50 - 3.59	3.5						
3.60 - 3.69	3.6						
3.70 - 3.79	3.7						
3.80 - 3.89	3.8						
3.90 - 3.99	3.9						
4.00 - 4.09	4.0						
410 410	4.1		12	10.05	110		-12
4.10 - 4.19	4.1	8	12	19.95	M8	9	12
4.20 - 4.29	4.2						
4.30 - 4.39	4.3						
4.40 - 4.49	4.4						
4.50 - 4.59	4.5						
4.60 - 4.69 4.70 - 4.79	4.6 4.7						
4.70 - 4.79 4.80 - 4.89	4.7						
4.90 - 4.99	4.8						
5.00 - 5.09	5.0						
3.00 - 3.09	3.0						
5.10 - 5.19	5.1	9	13	19.95	M8	10	13
5.20 - 5.29	5.2	<i>y</i>	13	13.33	1410	10	
5.30 - 5.39	5.3						
5.40 - 5.49	5.4						
5.50 - 5.59	5.5						
5.60 - 5.69	5.6						
5.70 - 5.79	5.7						
5.80 - 5.89	5.8						
5.90 - 5.99	5.9						
6.00 - 6.09	6.0						
6.10 - 6.19	6.1	10	14	19.95	M10	11	14
6.20 - 6.29	6.2						
6.30 - 6.39	6.3						
6.40 - 6.49	6.4						
6.50 - 6.59	6.5						
6.60 - 6.69	6.6						
6.70 - 6.79	6.7						
6.80 - 6.89	6.8						
6.90 - 6.99	6.9						
7.00 - 7.09	7.0						
710 710	7.1		4-	10.05	1111	4.0	
7.10 - 7.19	7.1	11	15	19.95	M10	12	15
7.20 - 7.29	7.2						
7.30 - 7.39	7.3						
7.40 - 7.49	7.4						
7.50 - 7.59	7.5						
7.60 - 7.69	7.6 7.7						
7.70 - 7.79 7.80 - 7.80							
7.80 - 7.80 7.90 - 7.99	7.8 7.9						
8.00 - 8.09	8.0						
0.00 0.03	0.0						
-							


Ejemplo de código de pedido:


Elemento Rascador Dinámico (DAE)	= 2618.
$d_5 = \emptyset 7 \text{ mm}$	= 07.
l = 19,95 mm	= 020.
d ₁ = 3,0 mm	= 0300
Código de pedido	= 2618.07.020.0300


FIBRO Patente solicitada

2618.06. 2618.16.

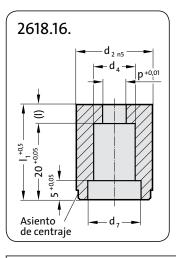
Casquillos de corte sin valona para Elemento Rascador Dinámico (DAE)

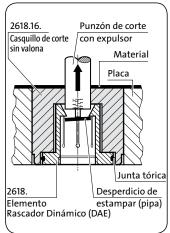
2618.06. con taladro de inicio

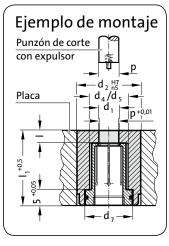
d ₂	d₄	d_7	Р	I	l ₁	
13	8	11	1.2	5	25	
16	9	12	1.2	5	25	
16	10	13	1.5	5	25	
20	11	14	1.5	5	25	
20	12	15	1.5	5	25	
l —						

Material:

HSS - acero rápido templado: 62±2HRC


Ejecución:


Diámetro d_2 , asiento de centraje y superficies frontales, en rectificado.


El diámetro P es un taladro de inicio para electroerosión.

Ejemplo de pedido:

Ver página desplegable E87

2618.16.

			(Casquillo de corte	•	
			I	ncrementos 0.01	DAE	d_1
d_4	d_7	- 1	I_1	Р	d₅	Increm.0.1
8	11	5	25	3.00 - 4.29	7	3.0 - 4.0
9	12	5	25	4.30 - 5.29	8	4.1 - 5.0
10	13	5	25	5.30 - 6.29	9	5.1 - 6.0
11	14	5	25	6.30 - 7.29	10	6.1 - 7.0
12	15	5	25	7.30 - 8.29	11	7.1 - 8.0
	8 9 10 11	8 11 9 12 10 13 11 14	8 11 5 9 12 5 10 13 5 11 14 5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Incrementos 0.01 d ₄ d ₇ I I ₁ P 8 11 5 25 3.00 - 4.29 9 12 5 25 4.30 - 5.29 10 13 5 25 5.30 - 6.29 11 14 5 25 6.30 - 7.29	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Material:

(HSS), acero rápido, templado

Ejecución:

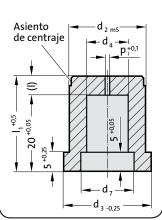
Diámetro d2, asiento de centraje y superficies frontales, en rectificado.

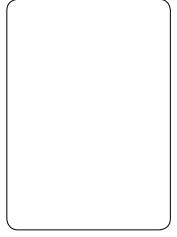
Nota:

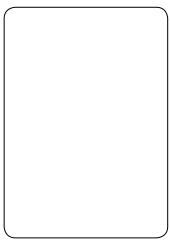
Elemento Rascador Dinámico (DAE) pedir por separado

Ejemplo de pedido:

Ver página desplegable E87


Patente solitiada


Casquillos de corte con valona para Elemento Rascador Dinámico (DAE)


FIBRO

2618.07. 2618.17.

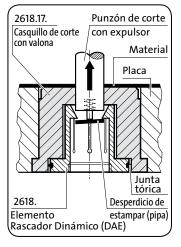
Material:

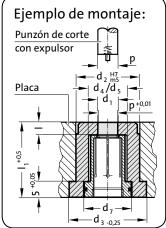
HSS - acero rápido

templado: 62±2HRC

Ejecución:


Diámetro d_2 , asiento de centraje y superficies frontales, en rectificado. El diámetro P es un taladro de inicio para electroerosión.


Ejemplo de pedido:


Ver página desplegable E87

26	518.0	7. Con tal	ladro de in	icio			
d2	dз	d4	d_7	Р	1	l1	
13	16	8	11	1.2	5	25	
16	19	9	12	1.2	5	25	
16	19	10	13	1.5	5	25	
20	23	11	14	1.5	5	25	
20	23	12	15	1.5	5	25	

Material:

Acero rápido (HSS), templado

Ejecución:

Diámetro d2 , asiento de centraje y superficies frontales, en rectificado.

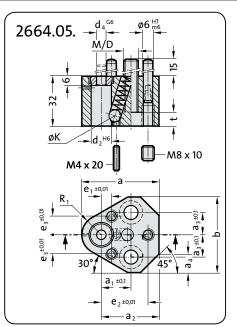
Nota:

Pedir por separado el Elemento Rascador Dinámico (DAE)

Ejemplo de pedido:

Ver página desplegable E87

16	19	9	12	5	25	4.30 - 5.29	8	4.1 - 5.0
16	19	10	13	5	25	5.30 - 6.29	9	5.1 - 6.0
20	23	11	14	5	25	6.30 - 7.29	10	6.1 - 7.0
20	23	12	15	5	25	7.30 - 8.29	11	7.1 - 8.0

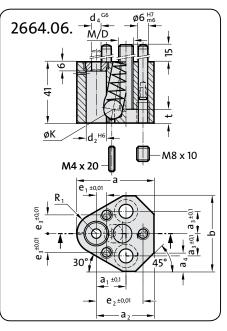


Placas porta-punzones de precisión para punzones de corte de cambio rápido

Placas porta-punzones de precisión triangulares para punzones de corte de cambio rápido, ejecución ligera para punzones de corte de cambio rápido, ejecución reforzada

FIBRO 2664.05. 2664.06.

Ejecución:


Para espesores de chapa hasta 3 mm.

El orificio de alojamiento del punzón d₂ se realiza con relación a los orificios de pasadores con una precisión de ±0,01 mm, de forma que así se garantiza la intercambiabilidad de la placa portapunzones con otras ejecuciones poligonales.

Nota:

Suministramos sobre demanda placas porta-punzones especiales.

Ejecución:

Para espesores de chapa superiores a 3 mm hasta máx. 6 mm.

El orificio de alojamiento del punzón d₂ se realiza con relación a los orificios de pasadores con una precisión de ±0,01 mm, de forma que así se garantiza la intercambiabilidad de la placa portapunzones con otras ejecuciones poligonales.

Nota:

Suministramos sobre demanda placas porta-punzones especiales.

266	4.05.						
d_2	10	13	16	20	25	32	38
$\frac{d_2}{d_4}$	6	6	6	6	6	6	6
M/D	8/9	8/9	8/9	10/11	12/13,5	12/13,5	12/13,5
a	43,5	49,5	52,5	59	68,5	68,5	76
$\overline{a_1}$	19,05	19,05	19,05	19,05	23,82	23,82	27
a ₂	34	37	38,5	42	46,5	46,5	50
a_3	11,12	14,27	15,87	17,47	19,84	19,84	24
a ₄	10	12	13	14	16	16	18
b	41	48,5	51,5	56,5	64,5	64,5	72,5
e_1	7,5	6,5	6	5	7	7	10
e_2	26,92	29,97	31,75	33,53	40,64	40,64	43,99
e ₃	9	12	13,5	16,5	22	22	26
$\frac{e_3}{\emptyset K}$	8	8	8	8	8	8	8
t	9	9	9	11	13	13	13
R_1	9,5	12,5	14	17	22	22	26

Ejemplo de pedido:

= 26	64.	
=	05.	
=	13	
= 26	64.05.13	
	=	= 2664. = 05. = 13 = 2664.05.13

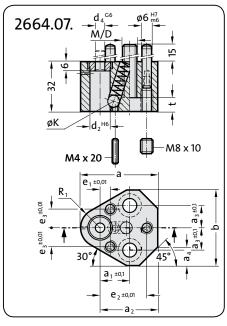
266	4.06.						
d ₂	10	13	16	20	25	32	40
$\overline{d_4}$	6	6	6	6	6	6	6
M/D	8/9	8/9	8/9	10/11	12/13,5	12/13,5	12/13,5
a	43,5	49,5	52,5	59	68,5	68,5	76
a_1	19,05	19,05	19,05	19,05	23,82	23,82	27
a ₂	34	37	38,5	42	46,5	46,5	50
$\overline{a_3}$	11,12	14,27	15,87	17,47	19,84	19,84	24
a ₄	10	12	13	14	16	16	18
b	41	48,5	51,5	56,5	64,5	64,5	72,5
e_1	7,5	6,5	6	5	7	7	10
e ₂	26,92	29,97	31,75	33,53	40,64	40,64	43,99
e ₃	9	12	13,5	16,5	22	22	26
e₃ ØK	10	12	12	12	12	12	12
t	9	9	9	11	13	13	13
R ₁	9,5	12,5	14	17	22	22	26

Placa porta-punzonest triangular	= 266	4.	
ejecución reforzada	=	06.	
$d_2 = \emptyset 13 \text{ mm}$	=	13	
Código	= 2664	4.06.13	

2664.07.

2664.10.

Placas porta-punzones de precisión triangulares para punzones de corte de cambio rápido, ejecución ligera para punzones de corte de cambio rápido, ejecución reforzada

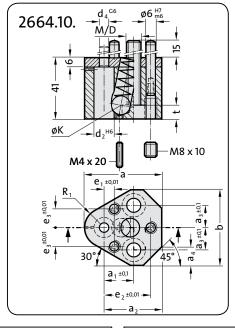

Ejecución:

Para espesores de chapa hasta 3 mm.

El orificio de alojamiento del punzón d_2 se realiza con relación a los orificios de pasadores con una precisión de ± 0.01 mm, de forma que así se garantiza la intercambiabilidad de la placa portapunzones con otras ejecuciones poligonales.

Nota:

Suministramos sobre demanda placas porta-punzones especiales.


Ejecución:

Para espesores de chapa superiores a 3 mm hasta máx. 6 mm.

El orificio de alojamiento del punzón d_2 se realiza con relación a los orificios de pasadores con una precisión de ± 0.01 mm, de forma que así se garantiza la intercambiabilidad de la placa portapunzones con otras ejecuciones poligonales.

Nota:

Suministramos sobre demanda placas porta-punzones especiales.

2664.07.

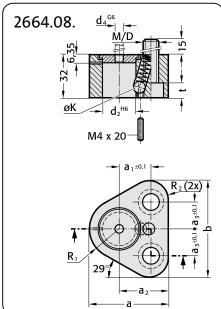
d ₂	6	
M/D	3	
M/D	6/6,6	
a	35	
a ₁	19,05	
a_2	27	
a_3	11,12	
a ₄	6	
<u>b</u>	37,5	
e ₁	9,0	
e ₂	23	
e ₃	8	
e_2 e_3 $\emptyset K$	6	
t	7	
		·

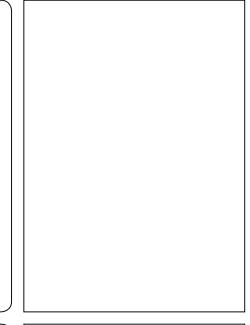
Ejemplo de pedido:

Placa porta-punzones triangular	= 2664.
ejecución ligera	= 07.
$d_2 = \emptyset 6 \text{ mm}$	= 06
Código	= 2664.07.06

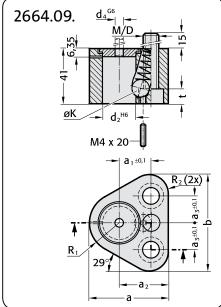
~	_	_	4.	4	\sim
,	n	h	Д.	- 1	(1
_	v	v	т.	. 1	v

d_2	10	13	16	20	25	32	40
$\overline{d_4}$	6	6	6	6	6	6	6
M/D	8/9	8/9	8/9	10/11	12/13,51	.2/13,5	12/13,5
a	43,5	49,5	52,5	59	68,5	68,5	76
$\overline{a_1}$	19,05	19,05	19,05	19,05	23,82	23,82	27
$\overline{a_2}$	34	37	38,5	42	46,5	46,5	50
a ₃	11,12	14,27	15,87	17,47	19,84	19,84	24
a ₄	10	12	13	14	16	16	18
b	41	48,5	51,5	56,5	64,5	64,5	72,5
e ₁	7,5	6,5	6	5	7	7	10
e ₂	26,92	29,97	31,75	33,53	40,64	40,64	43,99
e_3 $\emptyset K$	9	12	13,5	16,5	22	22	26
$\overline{\varnothing}$ K	10	12	12	12	12	12	12
t	9	9	9	11	13	13	13
$\overline{R_1}$	9,5	12,5	14	17	22	22	26


Placa porta-punzones triangular	= 266	4.	
ejecución reforzada	=	10.	_
$d_2 = \emptyset$ 13 mm	=	13	
Código	= 266	4.10.13	


Placas porta-punzones de precisión triangulares para punzones de corte de cambio rápido, ejecución ligera para punzones de corte de cambio rápido, ejecución reforzada

FIBRO

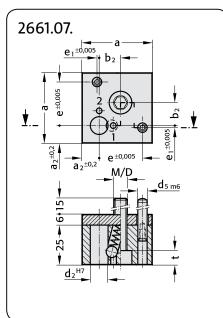

2664.08. 2664.09.

JUT.UJ. ——	
0 NM	
4	
\underline{gK} d_2^{H6}	
M4 x 20—	
-► a ₁ ±0,1	
$R_2(2x)$	
R ₁ 29°	
-a ₂	
a	/ L

2664	4.08.					
d ₂	10	13	16	20	25	32
$\overline{d_4}$	6	6	6	6	6	6
M/D	8	8	8	10	12	12
a	38,5	41,7	43,3	47,5	59,2	59,2
$\overline{a_1}$	19,05	19,05	19,05	19,05	23,82	23,82
a ₂	29	29	29	30	37	37
$\overline{a_3}$	11,12	14,27	15,87	17,47	19,84	19,84
b	40,61	47,93	51,59	57,93	70,85	70,85
ØK	8	8	8	8	8	8
t	9	9	9	11	13	13
$\frac{\overline{R_1}}{R_2}$	9,5	12,7	14,3	17,5	22,2	22,2
$\overline{R_2}$	9,5	9,5	9,5	11	15	15

Ejemplo de pedido:

= 26	64.	
=	08.	
=	20	
= 26	64.08.20	
	=	= 2664. = 08. = 20 = 2664.08.20


2664.09.										
d ₂	10	13	16	20	25	32				
d_4	6	6	6	6	6	6				
M/D	8	8	8	10	12	12				
a	38,5	41,7	43,3	47,5	59,2	59,2				
$\overline{a_1}$	19,05	19,05	19,05	19,05	23,82	23,82				
a ₂	29	29	29	30	37	37				
a ₃	11,12	14,27	15,87	17,47	19,84	19,84				
b	40,61	47,93	51,59	57,93	70,85	70,85				
ØK	10	12	12	12	12	12				
t	9	9	9	11	13	13				
$\overline{R_1}$	9,5	12,7	14,3	17,5	22,2	22,2				
$\frac{\overline{R_1}}{R_2}$	9,5	9,5	9,5	11	15	15				

Placa porta-punzones triangular	= 2664.
ejecución reforzada	= 09.
$d_2 = \emptyset 20 \text{ mm}$	= 20
Código	= 2664.09.20

Accesorios para placas porta-punzones de precisión triangulares para punzones de corte de cambio rápido

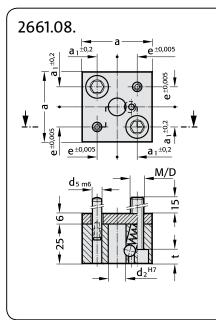
2192.10.	_	236.1.	2666.04.	2192.72.	2666.06.	2666.01.	2666.03.	2192.72.
20- 8 + P	20+		<u>†</u>	20-		d ₂ h ₆	d ₂ h ₆	8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 -
Tornillo de cabeza Pasador de clindrica clindrica posicionado 2192.10.08.035 236.1.0600.020 2192.10.08.035 236.1.0600.020 2192.10.10.035 236.1.0600.020 2192.10.12.035 236.1.0600.020 2192.10.12.035 236.1.0600.020 2192.10.12.035 236.1.0600.020			Bola 2666.04.008 2666.04.008 2666.04.008 2666.04.008 2666.04.008 2666.04.008	Perno roscado para la bola 2192.72.04.020 2192.72.04.020 2192.72.04.020 2192.72.04.020 2192.72.04.020	Muelle 2666.06.008 2666.06.008 2666.06.008 2666.06.008 2666.06.008 2666.06.008	Disco de apoyo para el passador de posicionado 2666.01.10 2666.01.13 2666.01.16 2666.01.25 2666.01.25 2666.01.32	Disco de 2666.03.10 2666.03.13 2666.03.16 2666.03.15 2666.03.26 2666.03.25 2666.03.32 2666.03.32	Tornillo prisionero 2192.72.08.008 2192.72.08.008 2192.72.08.008 2192.72.08.008 2192.72.08.008 2192.72.08.008
2192.10.12.035 236.1.0600.020 2 2192.10.08.040 236.1.0600.020 2 2192.10.08.040 236.1.0600.020 2 2192.10.08.040 236.1.0600.020 2 2192.10.10.050 236.1.0600.020 2 2192.10.12.050 236.1.0600.020 2 2192.10.12.050 236.1.0600.020 2 2192.10.12.050 236.1.0600.020 2 2192.10.12.050 236.1.0600.020 2			2666.04.008 2666.04.010 2666.04.012 2666.04.012 2666.04.012 2666.04.012 2666.04.012 2666.04.012	2192.72.04.020 2192.72.04.020 2192.72.04.020 2192.72.04.020 2192.72.04.020 2192.72.04.020 2192.72.04.020	2666.06.008 2666.06.010 2666.06.012 2666.06.012 2666.06.012 2666.06.012 2666.06.012	2666.01.38 2666.01.10 2666.01.13 2666.01.16 2666.01.20 2666.01.25 2666.01.37	2666.03.38 2666.03.10 2666.03.13 2666.03.16 2666.03.20 2666.03.25 2666.03.38	2192.72.08.008 2192.72.08.008 2192.72.08.008 2192.72.08.008 2192.72.08.008 2192.72.08.008 2192.72.08.008 2192.72.08.008
236.1.0600.020 236.1.0600.020 236.1.0600.020 236.1.0600.020 236.1.0600.020 236.1.0600.020 236.1.0600.020		26 26 26 26 26 26 26 26 26 26 26	2666.04.006 2666.04.008 2666.04.008 2666.04.008 2666.04.008 2666.04.008	2192.72.04.020 2192.72.04.020 2192.72.04.020 2192.72.04.020 2192.72.04.020 2192.72.04.020 2192.72.04.020	2666.06.006 2666.06.008 2666.06.008 2666.06.008 2666.06.008 2666.06.008	2666.01.06 2666.01.10 2666.01.13 2666.01.16 2666.01.20 2666.01.25 2666.01.32	2666.03.06 2666.03.10 2666.03.13 2666.03.16 2666.03.20 2666.03.25 2666.03.32	2192.72.08.008 2192.72.08.008 2192.72.08.008 2192.72.08.008 2192.72.08.008 2192.72.08.008 2192.72.08.008
2192.10.08.040 236.1.0600.020 266 2192.10.08.040 236.1.0600.020 266 2192.10.08.040 236.1.0600.020 266 2192.10.10.040 236.1.0600.020 266 2192.10.12.040 236.1.0600.020 266 2192.10.12.040 236.1.0600.020 266		26(2)	2666.04.010 2666.04.012 2666.04.012 2666.04.012 2666.04.012 2666.04.012	2192.72.04.020 2192.72.04.020 2192.72.04.020 2192.72.04.020 2192.72.04.020 2192.72.04.020	2666.06.012 2666.06.012 2666.06.012 2666.06.012 2666.06.012 2666.06.012	2666.01.10 2666.01.13 2666.01.16 2666.01.20 2666.01.25 2666.01.32	2666.03.10 2666.03.13 2666.03.16 2666.03.20 2666.03.25 2666.03.32	2192.72.08.008 2192.72.08.008 2192.72.08.008 2192.72.08.008 2192.72.08.008 2192.72.08.008
Forma de gancho Forma recta Forma de gancho Con Con Con Con Con Con Con Con Con Co	3.02	Con Con	Forma recta con la punta roscada 2666.05.03	o o				

Ejecución:

Los centros de los orificios para los pasadores d₅ son la referencia para los orificios porta-punzones.

Las medidas e, e_1 tienen una tolerancia de $\pm\,0,005$ mm.

La placas porta-punzones son intercambiables.


En el pedido debe concretarse la posición 1 ó 2 de la bola de blocaje.

Canal de bola horizontal = 1 Canal de bola vertical = 2

Nota:

El suministro comprende los pasadores y tornillos DIN EN ISO 4762.

Ejecución:

Los centros de los orificios para los pasadores $d_{\scriptscriptstyle 5}$ son la referencia para los orificios portapunzones.

Las medidas e, e_1 tienen una tolerancia de $\pm 0,005$ mm.

La placas porta-punzones son intercambiables.

Nota:

El suministro comprende los pasadores y tornillos DIN EN ISO 4762.

266	51.07.							
d_2	d_5	M/D	a	a_2	b ₂	e	e_1	t
10	8	8/9	45	11	15	28	1	9
13								
16								
20	10	10/11	56	17	18	32	5	11
25								
Eio	mnla	da nad	ida.					
		de ped						
Placa	porta-p	unzones cı	uadrada	3	= 2	2661.		

= 2661.07.20.2

para punzones de corte de cambio rápido $d_2 = \emptyset$ 20 mm

Canal de bola vertical

2661	.80.				
d ₂	d₅	M/D	a	a ₁ , e	t
6	8	8/9	45	13	9
10					
13					
16 20 25					
20	10	10/11	56	16	11
25	-	12/13,5	63	20	13

Ejemplo de pedido: Placa porta-punzones cuadrada para punzones de corte de cambio rápido

Placa porta-punzones cuadrada	= 2661.
para punzones de corte de cambio rápido	= 08.
$d_2 = \emptyset$ 20 mm	= 20
$d_2 = \emptyset 20 \text{ mm}$ Código	= 2661. 08.20

Código

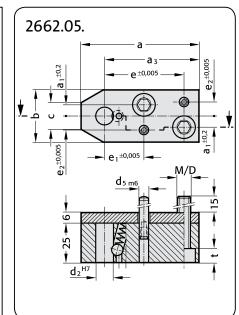
2662.05.

Placas porta-punzones de precisión rectangulares, para punzones de cambio rápido ejecución ligera

Material:

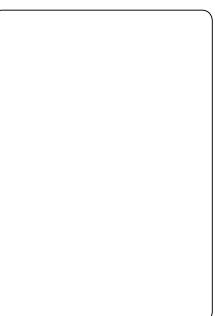
Placa porta-punzones cementada a 740 ±40 HV 10 Placa de presión de dureza 60 +2 HRC

Ejecución:

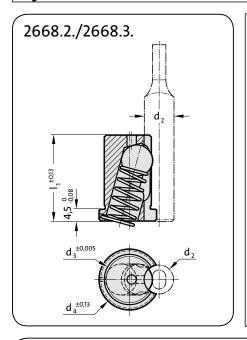

Los centros de los orificios d_5 para los pasadores son la referencia para los orificios de alojamiento de punzones.

Las medidas e, e_1 , e_2 tienen una tolerancia de $\pm\,0,005$ mm.

Las placas porta-punzones son intercambiables.


Nota:

El suministro comprende los pasadores y tornillos DIN EN ISO 4762.



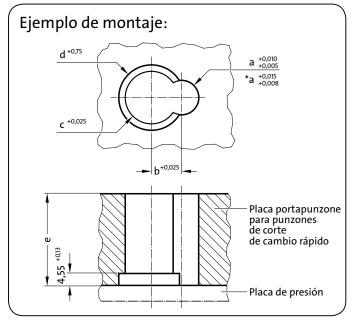
6	8	8/9	75	60	7	32	50	25	9	16	9
10											
13											
16											
20	10	10/11	85	63	9	40	53	28	11	20	11
25											

Placa porta-punzones rectangular	= 2662.
para punzones de corte de cambio rápido	= 05.
$\frac{d_2 = \emptyset \ 20 \ mm}{C \acute{o} digo}$	= 20
Código	= 2662. 05.20

ACCU-LOCK Inserto de sujeción para punzones de corte de cambio rápido **FIBRO** Ejecución ligera 2668.2. Ejecución reforzada 2668.3.

2668.2.						
	Punzón					
Código	de corte-Ø					
de pedido	"d ₂ "	d₃	d_4	l ₁		
2668.2.06	6	12	14.6	25.7		
2668.2.10	10	14	16.6	25.7		
2668.2.13	13	14	16.6	25.7		
2668.2.16	16	14	16.6	25.7		
2668.2.20	20	16	18.6	25.7		
2668.2.25	25	16	18.6	25.7		
2668.2.32	32	16	18.6	25.7		
2668.2.38	38	16	18.6	25.7		

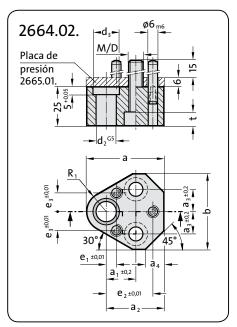
2668.3	2668.3.							
	Punzón							
Código	de corte-Ø							
de pedido	"d ₂ "	d_3	d_4	I_1				
2668.3.10	10	16	19.6	34.7				
2668.3.13	13	20	24.6	34.7				
2668.3.16	16	20	24.6	34.7				
2668.3.20	20	20	24.6	34.7				
2668.3.25	25	20	24.6	34.7				
2668.3.32	32	20	24.6	34.7				
2668.3.40	40	20	24.6	34.7				


2666.05.02 Herramienta

Herramienta para extraer la bola, forma recta

2666.05.02 Herramienta para extraer la bola, forma recta

Código	a	b	C	d	e
2668.2.06	6	6.5	12.013	15.0	25.7
2668.2.10	10	9.0	14.013	17.0	25.7
2668.2.13	13	10.5	14.013	17.0	25.7
2668.2.16	16	12.0	14.013	17.0	25.7
2668.2.20	20	14.0	16.013	19.0	25.7
2668.2.25	25	16.5	16.013	19.0	25.7
2668.2.32	*32	20.0	16.013	19.0	25.7
2668.2.38	*38	23.0	16.013	19.0	25.7
2668.3.10	10	10.0	16.013	20.0	34.7
2668.3.13	13	11.5	20.013	25.0	34.7
2668.3.16	16	13.0	20.013	25.0	34.7
2668.3.20	20	15.0	20.013	25.0	34.7
2668.3.25	25	17.5	20.013	25.0	34.7
2668.3.32	*32	21.0	20.013	25.0	34.7
2668.3.40	*40	25.0	20.013	25.0	34.7

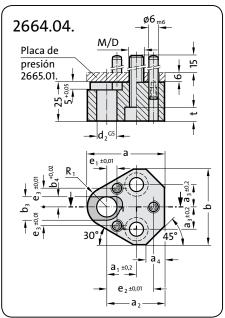

FIBRO			

Placas porta-punzones de precisión ISO

2664.02. 2664.04.

Ejecución:

Los centros de los orificios d5 son la referencia para la posición de los alojamientos de punzón.


La tolerancia de las medidas e_1 , e_2 , e_3 es de ± 0.01 mm.

Las placas porta-punzones son intercambiables.

Nota:

La placa de presión 2665.01. para la placa porta-punzones debe pedirse por separado.

Ejecución:

Los centros de los orificios d5 son la referencia para la posición de los alojamientos de punzón.

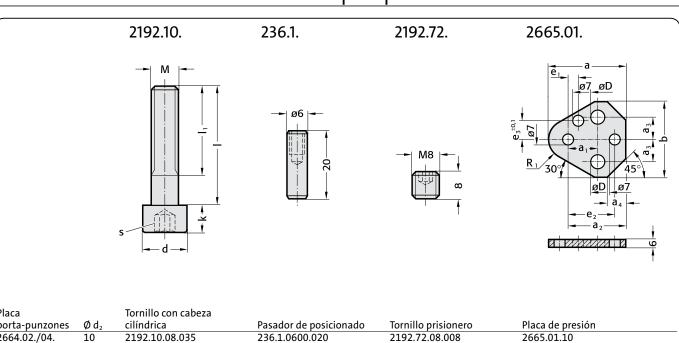
La tolerancia de las medidas e₁, e₂, e₃ es de ±0.01 mm.

Las placas porta-punzones son intercambiables.

Nota:

La placa de presión 2665.01. para la placa porta-punzones debe pedirse por separado.

266	4.02.					
d_2	10	13	16	20	25	32
$\overline{d_3}$	14	17	20	24	29	36
M/D	8/9	8/9	8/9	10/11	12/13,5	12/13,5
a	43,5	49,5	52,5	59	68,5	68,5
$\overline{a_1}$	19,05	19,05	19,05	19,05	23,82	23,82
$\overline{a_2}$	34	37	38,5	42	46,5	46,5
$\overline{a_3}$	11,12	14,27	15,87	17,47	19,84	19,84
a ₄	10	12	13	14	16	16
b	41,0	48,5	51,5	56,5	64,5	64,5
e ₁	7,5	6,5	6	5	7	7
e ₂	26,92	29,97	31,75	33,53	40,64	40,64
e ₃	9	12	13,5	16,5	22	22
$\frac{e_3}{t}$	9	9	9	11	13	13
$\overline{R_1}$	9,5	12,5	14	17	22	22

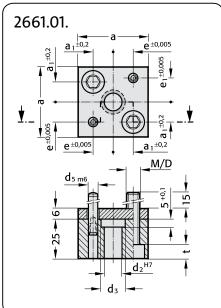

Ejemplo de pedido:

Placa porta-punzones triangular	= 266	4.	
para punzones de corte redondos ISO 8020	=	02.	
$d_2 = \emptyset$ 13 mm	=	13	
Código	= 266	4.02.13	

266	4.04.					
d ₂	10	13	16	20	25	32
M/D	8/9	8/9	8/9	10/11	12/13,5	12/13,5
a	43,5	49,5	52,5	59	68,5	68,5
a ₁	19,05	19,05	19,05	19,05	23,82	23,82
a ₂	34	37	38,5	42	46,5	46,5
a ₃	11,12	14,27	15,87	17,47	19,84	19,84
a ₄	10	12	13	14	16	16
b	41,0	48,5	51,5	56,5	64,5	64,5
b ₃	12	15	18	23	28	35
b ₄	5	6,5	8	10	12,5	16
e ₁	7,5	6,5	6	5	7	7
e ₂	26,92	29,97	31,75	33,53	40,64	40,64
e₃ t	9	12	13,5	16,5	22	22
t	9	9	9	11	13	13
$\overline{R_1}$	9,5	12,5	14	17	22	22

Placa porta-punzones triangular	= 2664.	
para punzones de corte de forma ISO 8020	= 04.	
$d_2 = \emptyset$ 13 mm	= 13	_
Código	= 2664.04.13	

Accesorios para porta-punzones de precisión triangulares para punzones de corte ISO 8020



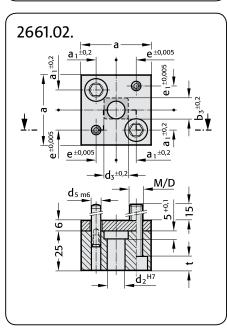
Placa		Tornillo con cabeza			
porta-punzones	Ød₂	cilíndrica	Pasador de posicionado	Tornillo prisionero	Placa de presión
2664.02./04.	10	2192.10.08.035	236.1.0600.020	2192.72.08.008	2665.01.10
	13	2192.10.08.035	236.1.0600.020	2192.72.08.008	2665.01.13
	16	2192.10.08.035	236.1.0600.020	2192.72.08.008	2665.01.16
	20	2192.10.10.035	236.1.0600.020	2192.72.08.008	2665.01.20
	25	2192.10.12.035	236.1.0600.020	2192.72.08.008	2665.01.25
	32	2192.10.12.035	236.1.0600.020	2192.72.08.008	2665.01.32

Placas porta-punzones de precisión cuadradas, para punzones ISO 8020

2661.01. 2661.02.

Ejecución:

Los centros de los orificios para los pasadores ${\sf d}_{\sf S}$ son la referencia para los orificios portapunzones.


Las medidas e, e1 tienen una tolerancia de ±0,005 mm.

Las placas porta-punzones son intercambiables.

Nota:

El suministro comprende los pasadores y tornillos DIN EN ISO 4762.

Ejecución:

Los centros de los orificios para los pasadores d5 son la referencia para los orificios portapunzones.

Las medidas e, e1 tienen una tolerancia de ±0,005 mm.

Las placas porta-punzones son intercambiables.

Nota:

El suministro comprende los pasadores y tornillos DIN EN ISO 4762.

266	1.01.						
d_2	d₃	d_5	M/D	a	a ₁ , e	e_1	t
6	10	8	8/9	45	13	15,5	9
8	12						
10	14						
13	17						
16	20						
20	25	10	10/11	56	16	19	11
25	30		12/13,5	63	20	22,5	13

Ejemplo de pedido:

Placa porta-punzones cuadrada	= 2661.
para punzones de corte ISO 8020	= 01.
$d_2 = \emptyset$ 13 mm	= 13
Código	= 2661.01.13

266	51.02.							
d ₂	d₃	d_5	M/D	a	a ₁ , e	e_1	b₃	t
6	10	8	8/9	45	13	15,5	8	9
8	12						10	
10	14						12	
13	17						15	
16	20						18	
20	25	10	10/11	56	16	19	22,5	11
25	30		12/13,5	63	20	22,5	27,5	13

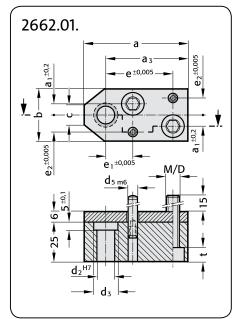
Placa porta-punzones cuadrada	= 2661.
para punzones de corte ISO 8020	= 02.
$d_2 = \emptyset$ 20 mm	= 20
Código	= 2661.02.20

2662.01.

2662.02.

Placas porta-punzones de precisión rectangulares, para punzones de corte ISO 8020

Ejecución:


Los centros de los orificios para los pasadores d_5 son la referencia para los orificios portapunzones.

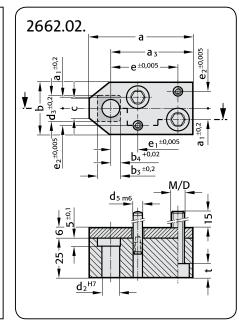
Las medidas e, e_1 , e_2 tienen una tolerancia de $\pm 0,005$ mm.

Las placas porta-punzones son intercambiables.

Nota:

El suministro comprende los pasadores y tornillos DIN EN ISO 4762.

Ejecución:


Los centros de los orificios para los pasadores $d_{\text{\tiny 5}}$ son la referencia para los orificios portapunzones.

Las medidas e, e_1 , e_2 tienen una tolerancia de $\pm 0,005$ mm.

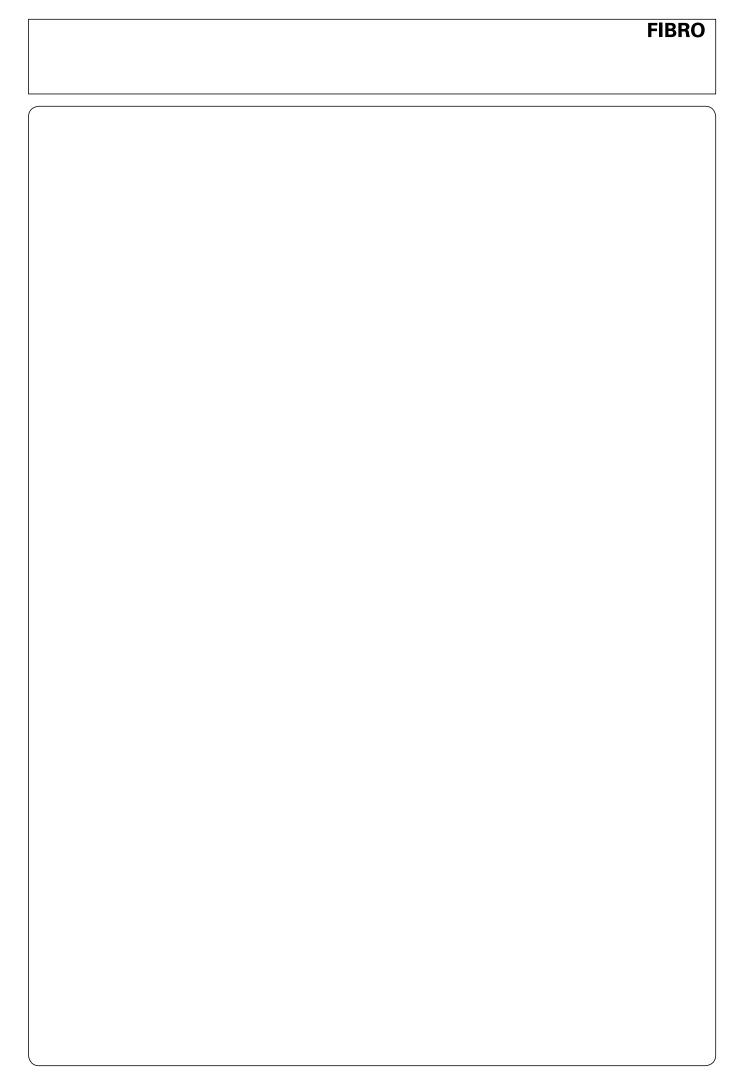
Las placas porta-punzones son intercambiables.

Nota:

El suministro comprende los pasadores y tornillos DIN EN ISO 4762.

2662.01.

l a ₂	a_3	a_5	M/D	a	a_1	a_3	b	e	e_1	e_2	C	τ
6	10	8	8/9	60	7	50	32	40	15	9	11	9
8	12											
10	14											
13	17			67		53		43	18		16	
16	20											
20	25	10	10/11	80	9	60	40	50	25	11	22	11
25	30											

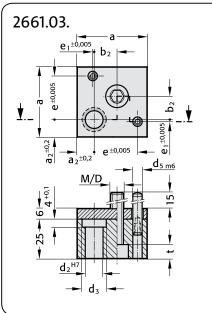

Ejemplo de pedido:

Placa porta-punzones rectangular	= 2662.	
para punzones de corte ISO 8020	= 01.	
$d_2 = \emptyset$ 13 mm	= 13	
Código	= 2662.01.13	

2662.02.

d_2	d ₃	d_5	M/D	a	a_1	a_3	b	b₃	b_4	e	e_1	e_2	C	t
6	10	8	8/9	60	7	50	32	8	3	40	15	9	11	9
8	12							10	4					
10	14							12	5					
13	17			67		53		15	6,5	43	18		16	
16	20							18	8					
20	25	10	10/11	80	9	60	40	22,5	10	50	25	11	22	11
25	30							27,5	12,5					

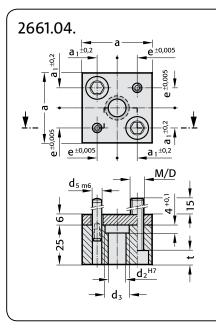
Placa de porta-punzones rectangular	= 2662.
para punzones de corte ISO 8020	= 02.
$d_2 = \emptyset$ 20 mm	= 20
Código	= 2662.02.20


FIBRO			

Placas porta-punzones de precisión VDI

Placas porta-punzones de precisión cuadradas, para punzones redondos VDI 3374

2661.03. 2661.04.


Ejecución:

Los centros de los orificios para los pasadores d_5 son la referencia para los orificios porta-punzones. Las medidas e, e_1 tienen una tolerancia de $\pm\,0,005$ mm. Las placas porta-punzones son intercambiables.

Nota:

El suministro comprende los pasadores y tornillos DIN EN ISO 4762.

Ejecución:

Los centros de los orificios para los pasadores d_5 son la referencia para los orificios porta-punzones. Las medidas e, e_1 tienen una tolerancia de $\pm\,0,005$ mm. Las placas porta-punzones son intercambiables.

Nota:

El suministro comprende los pasadores y tornillos DIN EN ISO 4762.

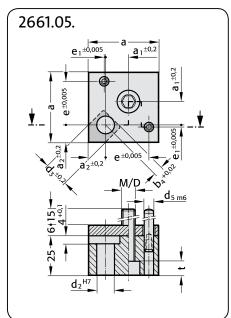
d_2	d₃	d ₅	M/D	a	a_2	b_2	e	e_1	t
10	14	8	8/9	45	11	15	28	1	9
13	17								
16	20								
20	25	10	10/11	56	17	18	32	5	11
25	30								

2661	.04.					
d ₂	d₃	d_5	M/D	a	a ₁ , e	t
d ₂ 10	14	8	8/9	45	13	9
13	17					
16	20					
16 20 25 32	25	10	10/11	56	16	11
25	30		12/13,5	63	20	13
32	37					

Ejemplo de pedido:	
Placa porta-punzones cuadrada	= 2661.
para punzones de corte redondos VDI 3374	= 03.
$d_2 = \emptyset$ 10 mm	= 10
Código	= 2661.03.10

Ejemplo de pedido:	
Placa porta-punzones cuadrada	= 2661.
para punzones de corte redondos VDI 3374	= 04.
$d_2 = \emptyset$ 16 mm	= 16
Código	= 2661.04.16

2661.05. 2661.06.

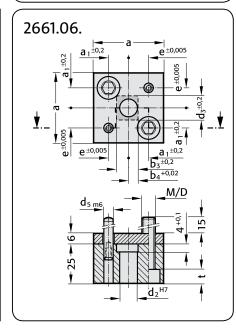

Placas porta-punzones de precisión cuadradas, para punzones de perfil VDI 3374


Ejecución:

Los centros de los orificios para los pasadores d_5 son la referencia para los orificios porta-punzones. Las medidas e, tienen una tolerancia de $\pm\,0,005$ mm. Las placas porta-punzones son intercambiables.

Nota:

El suministro comprende los pasadores y tornillos DIN EN ISO 4762.



Ejecución:

Los centros de los orificios para los pasadores d_5 son la referencia para los orificios porta-punzones. Las medidas e tienen una tolerancia de $\pm\,0,005$ mm. Las placas porta-punzones son intercambiables.

Nota:

El suministro comprende los pasadores y tornillos DIN EN ISO 4762.

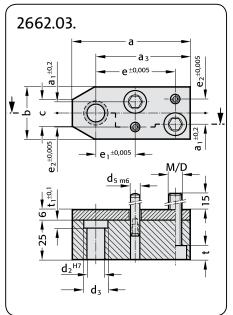
2661.05.

d_2	d₃	d₅	M/D a	a_2	a_1	e	e_1	b_4	t
10	14	8	8/9 45	11	15	28	1	5	9
13	17							6,5	
16	20							8	
20	25	10	10/11 56	17	18	32	5	10	11
25									

Ejemplo de pedido:

Placa porta-punzones cuadrada	= 2661.						
para punzones de corte de perfil VDI 3374	= 05.						
$d_2 = \emptyset$ 13 mm	= 13						
Código	= 2661.05.13						

2661.06.


d_2	d₃	d₅	M/D	a	a ₁ , e	b ₃	b_4	t
10	14	8	8/9	45	13	12	5	9
13	17					15	6,5	
16	20					18	8	
20	25	10	10/11	56	16	22,5	10	11
25	30		12/13,5	63	20	27,5	12,5	

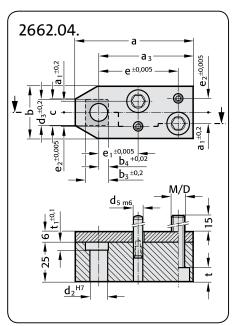
Placa porta-punzones cuadrada	= 2661.
para punzones de corte de perfil VDI 3374	= 06.
$d_2 = \emptyset 20 \text{ mm}$	= 20
Código	= 2661.06.20

Placas porta-punzones de precisión rectangulares, para punzones VDI 3374

2662.03. 2662.04.

Ejecución:

Los centros de los orificios para los pasadores d₅ son la referencia para los orificios porta-punzones.


Las medidas e, e_1 , e_2 tienen una tolerancia de $\pm 0,005$ mm.

Las placas porta-punzones son intercambiables.

Nota:

El suministro comprende los pasadores y tornillos DIN EN ISO 4762.

Ejecución:

Los centros de los orificios d₅ para los pasadores son la referencia para los orificios porta-punzónes.

Las medidas e, e_1 , e_2 tienen una tolerancia de $\pm 0,005$ mm.

Las placas porta-punzones son intercambiables.

Nota:

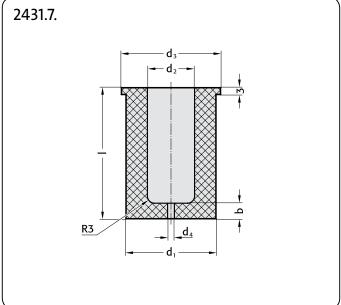
El suministro comprende los pasadores y tornillos DIN EN ISO 4762.

2662.03.													
d_2	d₃	d_5	M/D	a	a_1	a_3	b	e	e_1	e_2	c	t	t_1
6	10	8	8/9	75	7	60	32	50	25	9	16	9	3
10	14												4
13	17												
16	20												
20	25	10	10/11	85	9	63	40	53	28	11	20	11	
25	30												
32	37		12/13,5	95	13	70	50			15	30	13	

Ejemplo de pedido:

Placa porta-punzones rectangular	= 2662.
para punzones de corte redondos VDI 3374	= 03.
$d_2 = \emptyset$ 10 mm	= 10
Código	= 2662.03.10

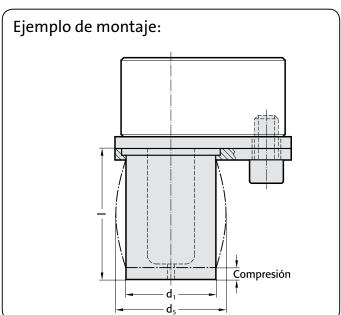
26	62.	04
----	-----	----


d ₂	d₃	d_5	M/D	a		a_3	b	b₃	b_4	e	e_1	e_2	C	t	t_1
6	10	8	8/9	75	7	60	32	8	3	50	25	9	16	9	3
10								12	5						4
13	17							15	6,5						
16	20							18	8						
20	25	10	10/11	85	9	63	40	22,5	10	53	28	11	20	11	
25	30							27,5	12,5						

Placa porta-punzones rectangular	= 2662.					
para punzones de corte de perfil VDI 3374	=	04.				
$d_2 = \emptyset$ 16 mm	=	16				
Código	= 260	62.04.16				

FIBRO	
	Accesorios

Rascadores 2431.7.


Material:

FIBROFLEX® 95 Shore A

Nota:

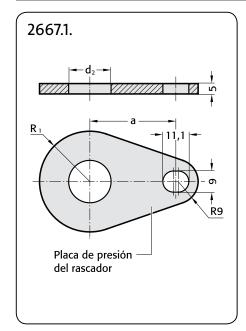
Los rascadores pueden emplearse para las placas porta-punzones 2664.02./.04./.05./.06.

	Long	gitudes	de ra	scadore	es l
$\overline{d_2}$	35	43	53	63	73
<u>d</u> ₂ 10	•	•	•	•	
13	•	•	•	•	•
16	•	•	•	•	•
20	•	•	•	•	•
25 32 38	•	•	•	•	•
32	•	•	•	•	•
38		•	•	•	•
40		•	•	•	•
	Apto	s para)		
				te, long	itud
Punzones de corte de cambio rápido, ligeros	63	71	80	090	100
Punzones de corte de cambio rápido, reforzados	71	80	90	100	110
Punzones de corte de precisión ISO 8020	-	71	80	090	100

243	31.7.							ı		
d ₂	d_1	d₃	d₄	$d_{5 \text{ max.}}$	b	35	43	53	63	73
	18	21	3	22	6	•	•	•	•	
13	23	26	3	26,5	6	•	•	•	•	•
16	30	33	3	34	6	•	•	•	•	•
20	33	36	3	38	7	•	•	•	•	•
25	40	43	3	47,6	7	•	•	•	•	•
32	50	54	4	57,9	7	•	•	•	•	•
38	60	64	4	69,6	8		•	•	•	•
40	60	64	4	69,6	8		•	•	•	•

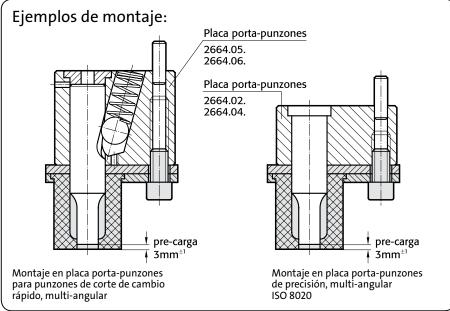
Ejemplo de pedido:

Kascador	= 243.	L./.
$d_2 = 10 \text{ mm}$	=	10.
l = 53 mm	=	53
Código	= 2433	1.7.10.53


* Los valores para los rascadores dependen de diferentes parámetros (p.e. lubrificantes, temperatura) y pueden diferir de los valores aquí indicados.

^{**}La carrera máxima del muelle no debería exceder del 15 % de la longitud

	Fuerzas del i	rascador	(N)*													
	Carrera del muelle	3 mm	6mm	9mm	3 mm	6mm	9mm	3 mm	6mm	9mm	3 mm	6mm	9 mm	3 mm	6mm	9mm
$\overline{d_2}$	Longitud	35	35	35	43	43	43	53	53	53	63	63	63	73	73	73
10		1300	**	**	1000	1700	**	900	1400	**	700	1200	1600	_	_	_
13		2100	**	**	1700	2700	**	1400	2200	**	1200	1900	2400	1000	1600	2000
16		3000	**	**	2500	4000	**	2000	3200	**	1700	2700	3500	1500	2400	3000
20		3500	**	**	2900	4700	**	2400	3800	**	2000	3200	4100	1700	2700	3600
25		5400	**	**	4400	7100	**	3600	5800	**	3000	4900	6300	2600	4200	5500
32		8400	**	**	6800	10900	**	5500	8800	**	4700	7500	9700	4000	6400	8400
38		_	_	_	_	_	**	7000	10400	**	6100	9200	12300	5000	7600	10100
40		_	_	_	10400	16600	**	8500	13600	**	7000	11300	14800	6000	9800	127000


2667.

Conjuntos de sujeción para rascadores

010

= 2667.1.010

Nota:

Las placas de presión y de sujeción del conjunto rascador, así como el tornillo deben pedirse por separado.

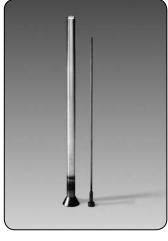
667	7.1/2.					
.0	d_1	d ₃	R_1	a		
.0	18	21	13	28		
3	23	26	15,5	31		
.6	30	33	18	32,9		
20	33	36	20,5	34,8		
25	40	43	24	39,8		
32	50	54	31	41,3		
38 40	60	64	36	44		
+0	60	64	36	44		
-jen	iplo de	pedido:				
Coniur	Ito de suiec	ión del rasca	ador = 266	57		
Tipo	ito ac sujec	ion acriasc	1001 - 200	1.		

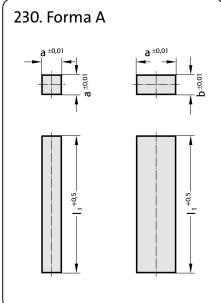
 $d_2 = \emptyset 10$ mm

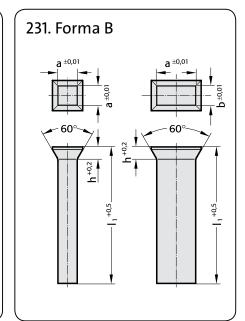
Código

Punzones y casquillos de precisión de perfiles especiales Piezas de precisión especiales según plano del cliente

Nuestros punzones y casquillos de corte están fabricados en las más modemas rectificadoras, en combinación con las más avanzadas máquinas de electroerosión de penetración y de hilo. El material y el tratamiento térmico son elegidos per FIBRO en cada caso, según su aplicación específica. Punzones de perforar y embutir, asi como de perfiles especiales, punzones con cabeza a 30° u otras formas, punzones de remachar y extrusionar, expulsores para la fabricación de tomillos, etc., los fabricamos sobre demanda.







Punzones de corte de precisión – cuadrados y rectangualres, sin cabeza y con cabeza recalcada

231.

Material:

Código: Forma A = 230.3., Forma B = 231.3.

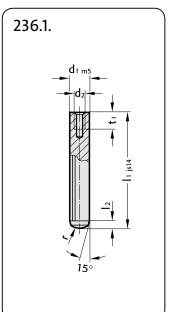
Dureza: Caña 64±2 HRC Cabeza

52±3 HRC

Ejecución:

Caña rectificada.

Cabeza recalcada en caliente, sobre demanda rectificada.


Para otros materiales y descripciones, véanse páginas E 10—E 11.

230.	L	,
a	<u>b</u>	l ₁
1- 8	1	
2-10	2	_ E #
3–12	3	_ S
4-12	4	" ad 3,5 da.
5-15	5	adr. k:
6-20	6	Punzones cuadrados con longitud de 73,5 mm en stock: Otros materiales y medidas sobre demanda.
7–24	7	es Cuc Tria de
8-24	8	on on gil er er ate
9-28	9	lon mis
10-34	10	– ng ng So.
12-34	12	– 8 1
		_

231.			
a	b	h	I_1
1- 8	1	1,2	
2-10	2	1,4	Jas
3-12	3	1,8	os m dic
4-12	4		adi 71 r 71 r 71 r
5-15	5		. Fe d
6-20	6	2,0	g e co
7–24	7	2,8	nzones cuadrad I longitud de 71 i en stock: materiales y me
8-24	8		on on angles of a second or a
9–28	9		in Sol
10-34	10		Punzones cuadrados Icon longitud de 71 mm en stock: Otros materiales y medidas sobre demanda.
12-34	12		i i

Ejemplo d	e pe	dido:			
Punzón de corte	= 23	31.			
Material HSS	=	3.			
a = 10 mm	=	1000	١.		
b = 6 mm	=		0600.		
I ₁ = 71 mm	=		071		
Código	= 23	31.3.1000	.0600.071		

236.1. 236.001 Pasadores cilíndricos de precisión con rosca interior similares a DIN EN ISO 8735/ISO 8735 FIBROZIPP

Material:

Acero especial de cementación, con una resistencia a la tracción del núcleo de 800 a 1000 N/mm²

Código: 236.1.

Dureza: 60±2 l

60±2 HRC

En nitrurado, sobre demanda.

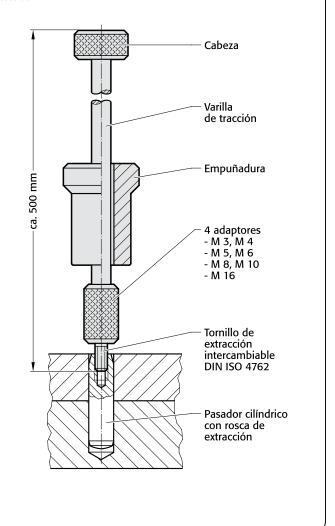
Ejecución:

Cementado, en rectificado fino. La ejecución de los pasadores de precisión cilíndricos FIBRO con rosca interior corresponde a las exigencias especiales en la construcción de utillajes de precisión. La tolerancia del diámetro según DIN EN ISO 8735/ISO 8735 de m₆ ha sido reducida a m₅. En contra de DIN, los pasadores son de acero cementado y tienen una rosca más pequeña, resultando un mayor grosor de pared en la parte roscada, que proporciona mayor rigidez.

Ejemplo de pedido:

Código

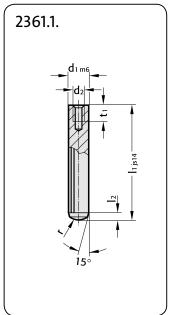
120


Pasador cilíndrico	= 23	36.1.
$d_1 = \emptyset 12 \text{ mm}$	=	1200.
L = 100 mm	=	100

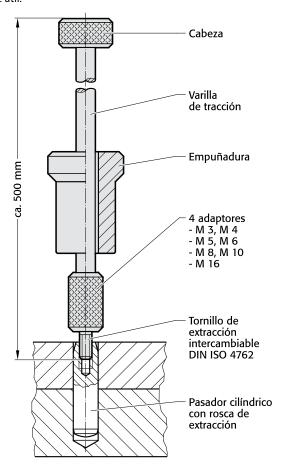
= 236.1.1200.100

236.1								
	6	8	10	12	14	16	20	25
$\frac{d_1}{d_2}$	M 4	M 5	M 6	M 6	M 8	M 8	M 10	M 16
$\frac{u_2}{t_1}$	6	8	10	10	12	12	16	24
l ₂	2,1	2,6	3	3,8	4	4,7	6	6
r - 12	6	8	10	12	14	16	20	25
			10	12		10	20	
16	•							
18	<u> </u>							
20	÷	•						
24	•	•	•					
28	•	•	•	•				
32	•	•	•	•	•	•		
36	•	•	•	•	•	•	•	
40	•	•	•	•	•	•	•	
45	•	•	•	•	•	•	•	•
50	•	•	•	•	•	•	•	•
55	•	•	•	•	•	•	•	•
60	•	•	•	•	•	•	•	•
70		•	•	•	•	•	•	•
80		•	•	•	•	•	•	•
90		•	•	•	•	•	•	•
100		•	•	•	•	•	•	•

236.001 FIBROZIPP


para extraer pasadores cilíndricos y cónicos con rosca interior. Una herramienta rápida y de fácil manejo para el operario. Este útil va provisto de juegos de extracción y tornillos intercambiables. Todos los pasadores habituales con rosca interior pueden ser «zippados» con este útil.

236.00.1.



236.001 FIBROZIPP

para extraer pasadores cilíndricos y cónicos con rosca interior. Una herramienta rápida y de fácil manejo para el operario. Este útil va provisto de juegos de extracción y tornillos intercambiables. Todos los pasadores habituales con rosca interior pueden ser «zippados» con este útil.

Ejemplo de pedido:

Pasador cilíndrico	= 236.1		
u ₁ - 👽 10 111111	=	1000.	
l ₁ = 45 mm	=	045	
Código	= 236.1	1000.045	

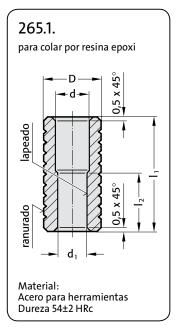
Material:

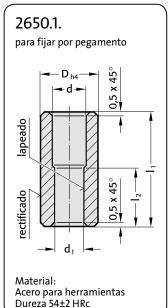
Acero especial de cementación, con una resistencia a la

tracción del núcleo de 600 N/mm²

Código: 2361.1. Dureza: 60±2 HRC

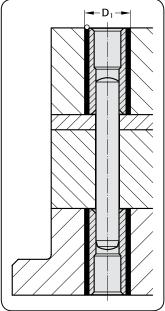
Ejecución:

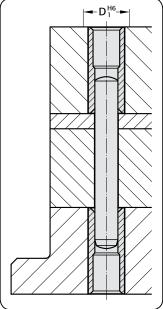

templados, en rectificado fino.


La ejecución de los pasadores de precisión cilíndricos FIBRO corresponde a las exigencias especiales de la construcción de utillajes de precisión.

2361.	1.								
d_1	4	5	6	8	10	12	14	16	20
d ₂	M 3	M 3	M 4	M 5	M 6	M 6	M 8	M 8	M 10
t ₁	4,5	6	6	8	10	10	12	12	16
l ₂	1,3	1,7	2,1	2,6	3	3,8	4	4,7	6
r	4	5	6	8	10	12	14	16	20
l ₁									
8		•							
10	•	•							
12	•	•	•						
14	•	•	•						
16	•	•	•	•	•				
18	•	•	•	•	•				
20	•	•	•	•	•	•			
22			•	•					
24	•	•	•	•	•	•			
26			•	•					
28	•	•	•	•	•	•	•		
30	•	•	•	•	•	•			
32	•	•	•	•	•	•	•	•	
36	•	•	•	•	•	•	•	•	•
40	•	•	•	•	•	•	•	•	•
45		•	•	•	•	•	•	•	•
50	•	•	•	•	•	•	•	•	•
55		•	•	•	•	•	•	•	•
60		•	•	•	•	•	•	•	•
70			•	•	•	•	•	•	•
80			•	•	•	•	•	•	•
90				•	•	•	•	•	•
100				•	•	•	•	•	•
120				•	•	•	•	•	•

265.1. 2650.1.


Casquillos de precisión guía-pasadores para colar con resina epoxi Casquillos de precisión guía-pasadores para fijar por pegamento



Para ser colados con resina epoxi

Casquillos de precisión guía-pasadores se emplean cuando hace falta con frecuencia cambiar piezas no templadas o sustituirlas por otras nuevas, por ejemplo en la construcción de utillajes de precisión. Los orificios de la matriz para los pasadores, rectificados por coordenadas, son unidos al casquillo mediante el pasador 235.1.

El orificio de alojamiento para el casquillo para pasadores es

taladrado a una sobremedida de aprox. 2 mm. El casquillo, una vez poisicionado con precisión, es fijado en la placa matriz con FIBROLIT® ZWO o FIBROFIX®-SECHS.

Para ser fijados por pegamento

La precisión de posicionado del casquillo se obtiene gracias al orificio de alojamiento tolerancia H 6. La única misión del pegamento es la de

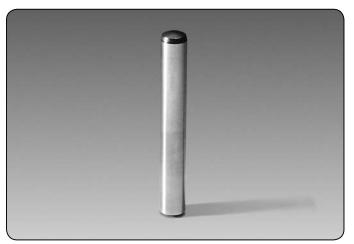
Ventajas de la fijación por pegamento: – alta precisión y estabilidad – intercambiabilidad sin problemas

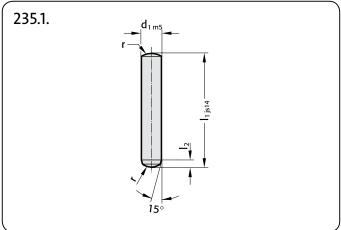
265.1.

Recomendamos no hacer entrar el casquillo a presión, para no ocasionar una deformación inadmisible de la geometría del casquillo.

Ejemplo de pedido:			
1 Casquillo guía-pasador – indiv	vidual –		
Casquillo guía-pasador	= 265.		análogo 2650.
Material WS	=	1.	-
$d_1 = \emptyset 8,0 \text{ mm}$	=	0800.	
Cantidad – uno	=	1	
Código	= 265.	.1.0800.1	
Ejemplo de pedido:			
1 Casquillo guía-pasador + 1 pa	sador c	ilíndrico	
Casquillo guía-pasador	= 265.		análogo 2650.
Material WS		1.	
$d_1 = \emptyset 8,0 \text{ mm}$	=	0800.	
Cantidad = 1	=	1.	
Longitud del pasador = 40 mm	=	040	
Código	= 265.	1.0800.1.040	
Ejemplo de pedido:			
Ejempio de pedido:			
2 casquillos-pasadores + 1 pasa			(1 2552
Casquillo guía-pasador	= 265.		análogo 2650.
Material WS	=	1.	
$d_1 = \emptyset 8,0 \text{ mm}$	=	0800.	
Cantidad= 2	=	2.	

050


= 265.1.0800.2.050


d_1	d	D	D_1	I_1	I_2
6	7	10	12	25	12
8	9	12	14	30	16
10	11	16	18	36	20
2650.1.					
2030.1.					
d_1	d	D	D_1^{H6}	I_1	I_2
6	7	10	10	25	12
8	9	12	12	30	16
10	11	16	16	36	20

Longitud del pasador= 50 mm

Código

235.1.

Ejecución:

templados, en rectificado fino.

La ejecución de los pasadores de precisión cilíndricos FIBRO corresponde a las exigencias especiales de la construcción de utillajes de precisión. La tolerancia del diámetro según DIN EN ISO 8734 de m₆ ha sido reducida por FIBRO a m₅.

Ejemplo de pedido:

Pasador cilíndrico	= 235.1	l.	
d ₁ = Ø 10 mm	=	1000.	
I ₁ 2= 80 mm Código	=	080	
Código	= 235.1	L.1000.080	

Material:

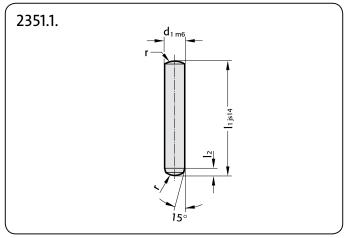
WS Acero especial para fricción.

Desde Ø6 mm: acero especial de fricción cementado,

con una resistencia a la tracción del núcleo

de 800 a 1000 N/mm².

Código: 235.1.


Dureza: 60±2 HRc

En nitrurado, sobre demanda.

	1	1,5	2	2,5	3	4	5	6	8	10	12	14	16	20
2	0,48	0,62	0,78	0,95	1,1	1,4	1,7	2,1	2,6	3	3,8	3,8	4,7	6
r	1	1,6	2	2,5	3	4	5	6	8	10	12	16	16	20
1														
6		•	•	•	•	•								
8	•	•	•	•	•	•	•							
LO	•	•	•	•	•	•	•	•	•					
L2	•	•	•	•	•	•	•	•	•					
L4 L6		•	•	•	•	•	•	•						
L6 L8		•	•	•	•	·	$\overline{}$		-	•				
20			•	•	•	•	-	-	-	-	•			
24			•	•	•	-	•	•	•	-	<u> </u>			
<u>28</u>			•	•	•	•	•	•	•	•	•			
32			•	•	•	•	•	•	•	•	•			
36			•	Ŏ	•	•	•	•	•	Ť	Ť	•		
10					•	•	•	•	•	•	•	•	•	
15					•	•	•	•	•	•	•	•	•	
50						•	•	•	•	•	•	•	•	
55						•	•	•	•	•	•	•	•	•
50						•	•	•	•	•	•	•	•	•
70							•	•	•	•	•	•	•	•
30							•	•	•	•	•	•	•	•
90								•	•	•	•	•	•	•
00								•	•	•	•	•	•	•
20									•	•	•	•	•	•
30											•			
10													•	•

2351.1.

Pasadores cilíndricos de precisión símil a DIN EN ISO 8734/ISO 8734

Material:

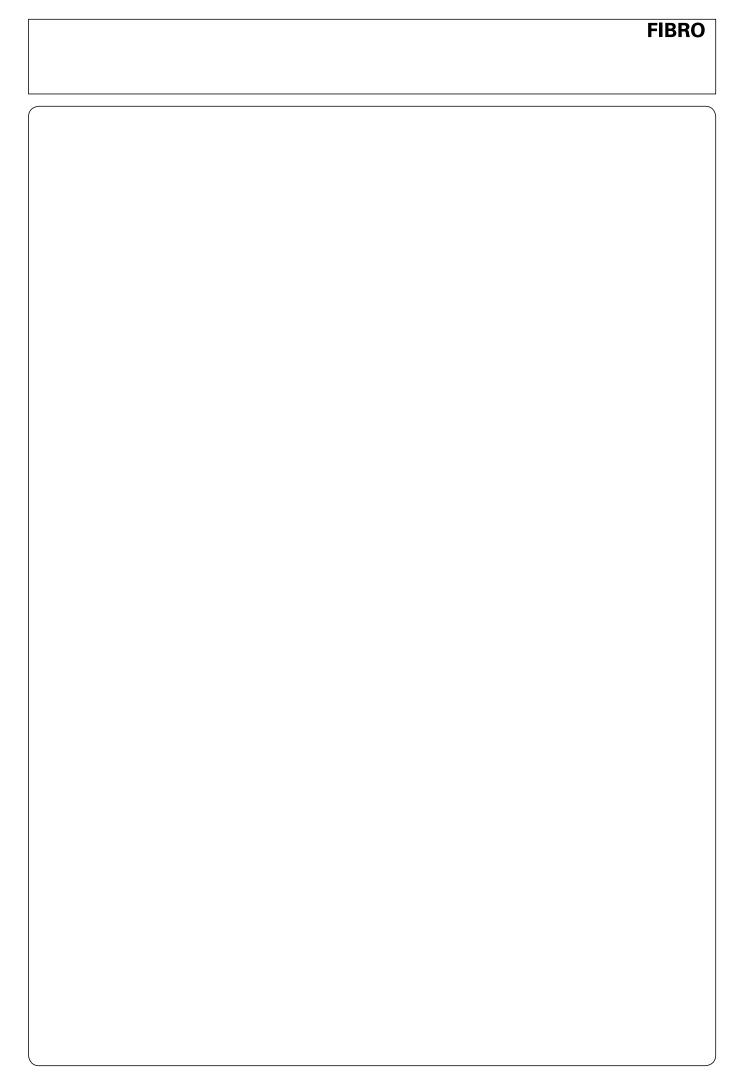
WS Acero especial para fricción,

con una resistencia a la tracción del núcleo

de 600 N/mm².

Código: 2351.1.

Dureza: 60±2 HRc


Ejecución:

templados, en rectificado fino.

La ejecución de los pasadores de precisión cilíndricos FIBRO corresponde a las exigencias especiales de la construcción de utillajes de precisión.

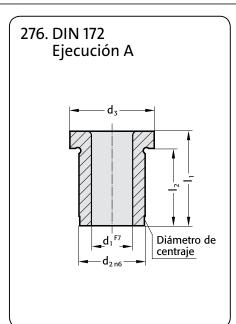
Pasador cilíndrico	= 2351.1	.		
$d_1 = \emptyset 10 \text{ mm}$	=	1000.		
l ₁ 2= 45 mm	=	045	5	
Código	= 2351.1	1000.045	5	

2351.1.															
d_1	1	1,5	2	2,5	3	4	5	6	8	10	12	14	16	20	
l ₂	0,4	0,5	0,6	0,7	0,8	1	1,2	1,5	1,8	2	2,5	2,5	3	4	
r	1	1,6	2	2,5	3	4	5	6	8	10	12	16	16	20	
l ₁															
4	•	•	•												
5	•	•	•	•	•										
6	•	•	•	•	•	•									
8	•	•	•	•	•	•	•	•							
10	•	•	•	•	•	•	•	•							
12	•	•	•	•	•	•	•	•							
14		•	•	•	•	•	•	•	•						
16		•	•	•	•	•	•	•	•	•					
18			•	•	•	•	•	•	•	•					
20		•	•	•	•	•	•	•	•	•	•				
22		•	•	•	•	•	•	•	•	•					
24		•	•	•	•	•	•	•	•	•	•	•	•		
26			•	•	•	•	•	•	•	•	•		•		
28			•	•	•	•	•	•	•	•	•	•	•		
30			•	•	•	•	•	•	•	•	•	•	•		
32			•	•	•	•	•	•	•	•	•	•	•		
36					•	•	•	•	•	•	•	•	•	•	
40			•		•	•	•	•	•	•	•	•	•	•	
45					•	•	•	•	•	•	•	•	•	•	
50					•	•	•	•	•	•	•	•	•	•	
55							•	•	•	•	•	•	•	•	
60					•	•	•	•	•	•	•	•	•	•	
70						•	•	•	•	•	•	•	•	•	
80						•	•	•	•	•	•	•	•	•	
90								•	•	•	•	•	•	•	
100								•	•	•	•	•	•	•	
120									•	•	•	•	•	•	

276. 277.

Casquillos guía-brocas con y sin valona DIN 172 + 179 ejecución A

Material:

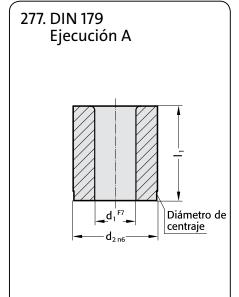

Acero de cementation, templado Dureza: 740±40 HV10

Ejecución:

Diámetros d1, d2 así como la superficie de apoyo de la valona, rectificados.

Ejemplo de pedido:

Lasquillo		
guía brocas	= 276.	
Material WS	= 1.	
$d_1 = 8,0 \text{ mm}$	= 0800.	
I ₁ = 20 mm	= 020	
Código	= 276.1.0800.020	

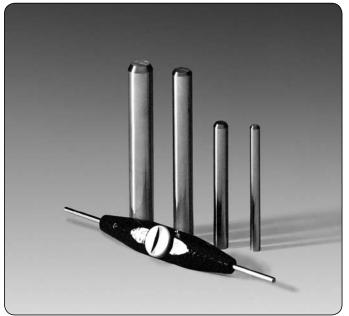

Material:

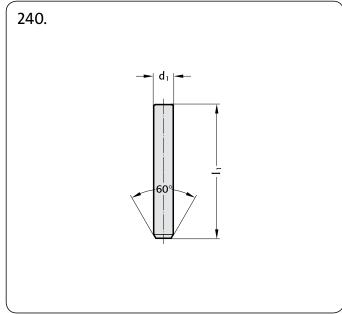
Acero de cementation, templado Dureza: 740±40 HV10

Ejecución:

Diámetros d_1 , d_2 rectificados.

Casquillo guía brocas	= 277.
Material WS	= 1.
$d_1 = 9,1 \text{ mm}$	= 0910.
l ₁ = 25 mm	= 025
Código	= 277.1.0910.025

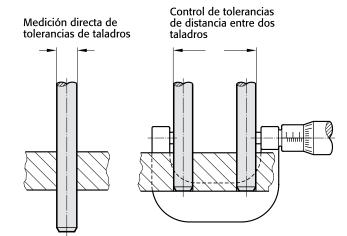



276.			со	rto	med	iano	lar	go
d ₁ *	d_2	d₃	I_1	I_2	I_1	l ₂ 7	I_1	l ₂
0,4 - 1,0	3	6	6	4	9		-	_
1,1 - 1,8	4	7	6	4	9	7	_	_
1,9 - 2,6	5	8	6	4	9	7	_	_
2,7 - 3,3	6	9	8	5,5	12	9,5	16	13,5
3,4 - 4,0	7	10	8	5,5	12	9,5	16	13,5
4,1 - 5,0	8	11	8	5,5	12	9,5	16	13,5
5,1 - 6,0	10	13	10	7	16	13	20	17
6,1 - 8,0	12	15	10	7	16	13	20	17
8,1 – 10,0	15	18	12	9	20	17	25	22
10,1 – 12,0	18	22	12	8	20	16	25	21
12,1 – 15,0	22	26	16	12	28	24	36	32
15,1 – 18,0	26	30	16	12	28	24	36	32
18,1 – 22,0	30	34	20	15	36	31	45	40
22,1 – 26,0	35	39	20	15	36	31	45	40
26,1 – 30,0	42	46	25	20	45	40	56	51
30,1 – 35,0	48	52	25	20	45	40	56	51
35,1 – 42,0	55	59	30	25	56	51	67	62
42,1 – 48,0	62	66	30	24	56	50	67	61
48,1 – 55,0	70	74	30	24	56	50	67	61
55,1 – 63,0	78	82	35	29	67	61	78	72
Escalonamient	o d ₁ = (),1 mm						

277.		corto	mediano	largo
d_1^*	d_2	I ₁	I ₁	l ₁
0,4 - 1,0	3	6	9	_
1,1 - 1,8	4	6	9	_
1,9 - 2,6	5	6	9	
2,7 - 3,3	6	8	12	16
3,4 - 4,0	7	8	12	16
4,1 - 5,0	8	8	12	16
5,1 - 6,0	10	10	16	20
6,1 - 8,0	12	10	16	20
8,1 - 10,0	15	12	20	25
10,1 - 12,0	18	12	20	25
12,1 – 15,0	22	16	28	36
15,1 – 18,0	26	16	28	36
18,1 – 22,0	30	20	36	45
22,1 – 26,0	35	20	36	45
26,1 – 30,0	42	25	45	56
30,1 – 35,0	48	25	45	56
35,1 – 42,0	55	30	56	67
42,1 – 48,0	62	30	56	67
48,1 – 55,0	70	30	56	67
55,1 - 63,0	78	35	67	78
Escalonamiento d ₁ =	0,1 mm			

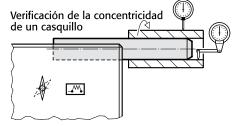
240.

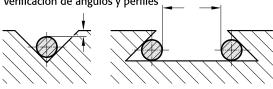
Calibres de precisión cilindricos DIN 2269



Material:

acero de aleación para herramientas, templado y estabilizado


Dureza: 60±2 HRC


Ejecución:

en rectificado fino

calidad I tolerancia ±0,001 calidad II tolerancia ±0,002

Verificación de ángulos y perfiles

Código

Calibre: Calidad I 240.1. 240.2. individual: Calidad II

Surtidos 91 calibres desde Ø 1 mm pequeños:

hasta Ø 10 mm, aumentando en 0,1 mm, completo en estuche con alojamientos

240.51. Calidad I Calidad II 240.52.

Surtidos 273 calibres desde Ø 1 mm hasta grandes: Ø 10 mm, aumentando en 0,1 mm.

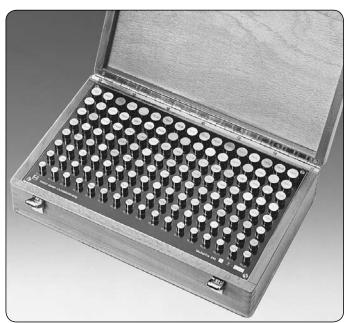
Cada medida está suplementada con dos calbires adicionales: -0,01 mm y +0,01 mm,

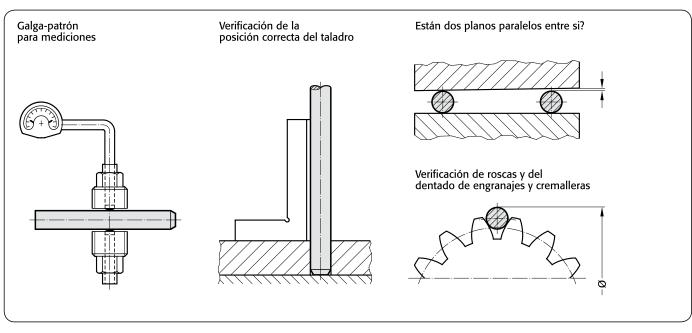
completo en estuche con alojamientos Calidad I 240.41. Calidad II 240.42.

Disponibles en calidades I y II, de Surtidos especiales: acuerdo con sus indicaciones.

A partir de Ø 3 mm, los calibres llevan la medida marcada.

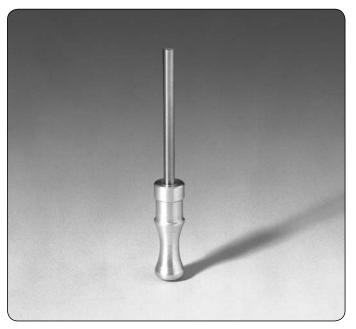
240.

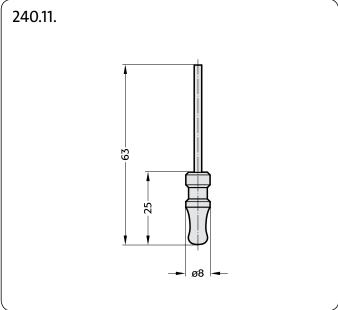

d ₁	Escalonamientos	l ₁
0,30- 1,00	0,01	50
1,01- 3,00		
3,01- 6,00		
6,01-10,00		70
10,01-12,00		
12,01-14,00		
14,01-16,00		
16,01-19,00		
19,01-20,00		


	•
Calibre	= 240.
Calidad I	= 1.
u ₁	= 0404
Código	= 240.1.0404

240.

Calibres de precisión cilíndricos DIN 2269 Porta-calibres, Estuches con alojamientos




240.		
Porta-calibres		
(sin calibres)	Gama de diámetros	Código
	de 1 a 2	240.45.1
	de 2 a 4	240.45.2
	de 4 a 6	240.45.3
	de 6 a 8	240.45.4
	de 8 a 10	240.45.5
Porta-calibres para la s	ujeción de dos calibres dentr	0
del mismo área de tole	erancias (p. e. pasa – no pasa)	

stuche con Para conservar los calibres y ojamientos: guardarlos ordenadamente, in calibres) cuadro de alojamento con indicación de medidas.										
Para surtido grande, approx. 270 unidades Medidas exteriores approx. 250 x 90 x 390										
Para surtido pequeño approx. 90 unidades Medidas exteriores approx. 155 x 90 x 285	240.92.									
Disponibles con quadro de alojamiento: Calidad I Calidad II										
Ejemplo de pedido: Estuche para. approx. 270 calibres = 240.91. Quadro de alojamiento – Calidad I = 1 Código = 240.91.1										
	guardarlos ordenadamenté, cuadro de alojamento con indicación de medidas. Para surtido grande, approx. 270 unidades Medidas exteriores approx. 250 x 90 x 390 Para surtido pequeño approx. 90 unidades Medidas exteriores approx. 90 unidades Medidas exteriores approx. 155 x 90 x 285 Disponibles con quadro de alojamiento: Calidad II Calidad II pedido: rox. 270 calibres = 240.91. iento – Calidad I = 1									

Calibres cilíndricos con mango Calibres cilíndricos con estuches con alojamientos

240.11./22. 240.31./32.

240.11. Calibres cilíndricos con mango

Los calibres están fijados en el mango y marcados con el diámetro.

Calibres Ø 0,3 – 3,0 mm Código

individuales: con incrementos de 0,01 mm

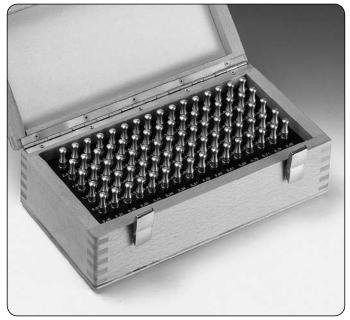
Calidad I 240.11. Calidad II 240.22.

Surtido: 84 calibres a partir de Ø 0,3 – 3,0 mm,

con incrementos de 0,1 mm.
Cada medida está suplementada
con dos calibres adicionales de
-0,01 mm y +0,01 mm

-0,01 mm y +0,01 mm p. e. 0,29 - 0,30 - 0,31

Calidad I 240.31. Calidad II 240.32.


Surtido Lo suministramos de acuerdo con sus

especial: indicaciones en calidad I ó II

Estuches con alojamientos:

Para conservar los calibres y guardarlos ordenadamente, estuche con cuadro de alojamientos con indicación de las medidas.

Medidas exteriores aprox. 155x90x285.

Material:

Acero de aleación para herramientas, templado y estabilizado. Dureza 60±2 HRC En rectificado fino Calidad I ±0,001 Calidad II ±0,002 según DIN 2269

Calibre	= 240.
Calidad I, con mango	= 11.
d ₁ = 1,5 mm	= 0150
Código	= 240.11.0150

2282.01.

Unidades de punzonar y embutir, con matriz agujeros para tornillos autorroscantes en la chapa

Material:

HSS

Ejecución:

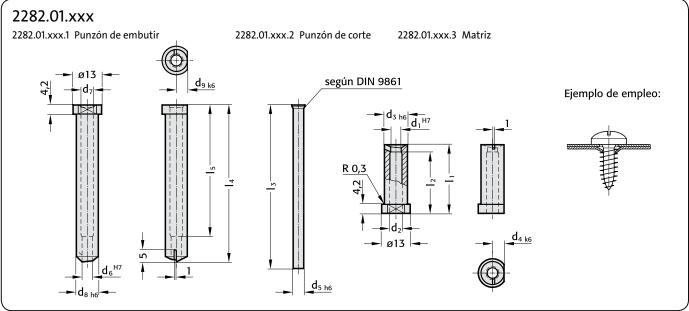
La unidad de punzonar y embutir, con matriz, agujeros, para tornillos de chapa consiste en:

1 x punzón de embutir

1 x punzón de corte 1 x matriz

Espesores de chapa:

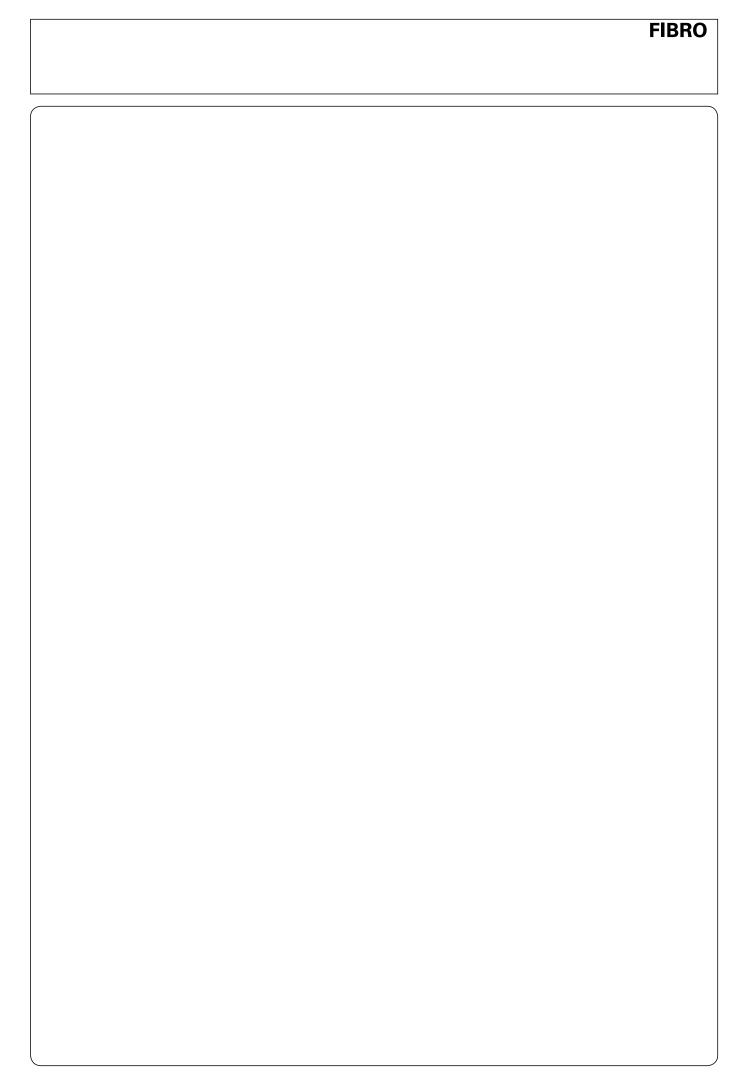
máx. 0,6 mm = 2282.01.035 = 2282.01.039


máx. 0,8 mm = 2282.01.042

máx. 0,9 mm = 2282.01.048

= 2282.01.055 máx. 1,0 mm

= 2282.01.063


2282.01.															
Código	∅ nominal = tamaño de rosca	d₁H7	d_2	d₃h6	d₄k6	d₅h6	d₅H7	d ₇	d₅h6	d₃k6	I ₁	l ₂	I ₃	l ₄	I ₅
2282.01.035	B 3,5	2,75	3,2	7,5	3,75	2,7	2,7	3,1	7,5	3,75	31,3	28	74,5	71,5	60
039	B 3,9	3,05	3,4	7,5	3,75	3,0	3,0	3,6	7,5	3,75					
042	B 4,2	3,15	3,5	8,5	4,25	3,1	3,1	3,7	8,0	4,0					
048	B 4,8	3,85	4,2	9,0	4,50	3,8	3,8	4,5	8,0	4,0					
055	B 5,5	4,35	4,8	9,0	4,50	4,3	4,3	5,0	8,0	4,0					
063	В 6,3	4,85	5,3	10,5	5,25	4,8	4,8	5,5	10,0	5,0					

Ejemplo de pedido:

Unidad de punzonar y embutir, con matriz,

agujeros para tornillos autorroscantes en la chapa

Ø nominal = tamaño de rosca (tornillo de chapa) = B 3,5 035 = 2282.01.035

